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ABSTRACT
Honeywords are false passwords injected in a database for detecting

password leakage. Generating honeywords is a challenging problem

due to the various assumptions about the adversary’s knowledge

as well as users’ password-selection behaviour. The success of a

Honeywords Generation Technique (HGT) lies on the resulting

honeywords; the method fails if an adversary can easily distinguish

the real password. In this paper, we propose HoneyGen, a practical

and highly robust HGT that produces realistic looking honeywords.

We do this by leveraging representation learning techniques to

learn useful and explanatory representations from a massive collec-

tion of unstructured data, i.e., each operator’s password database.

We perform both a quantitative and qualitative evaluation of our

framework using the state-of-the-art metrics. Our results suggest

that HoneyGen generates high-quality honeywords that cause so-

phisticated attackers to achieve low distinguishing success rates.

CCS CONCEPTS
• Security and privacy → Database activity monitoring; Access
control.
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1 INTRODUCTION
Existing password-based authentication systems maintain a sensi-

tive file comprised of the registered users’ hashed passwords [32].

This sensitive file is an attractive target for attackers as if success-

fully retrieved and cracked, i.e., recover the hashed passwords’

plain-text formats, an adversary can undetectably impersonate a

user. Several prestigious web services have been compromised,
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Figure 1: HoneyGen receives ith user’s Real Password (RPi )
and responds with an enriched with (k−1) honeywords pass-
words list containing k sweetwords (SWs) in total. Then, the
returned SWs are hashed (according to each operator’s hash
function h()) and stored in the password file F .

e.g., Yahoo [18], Dropbox [19], LinkedIn [23], and millions of pass-

words were leaked [32]. For example, the “Have i been pwned?” 1

database contains over 500 million real-world plain-text passwords

previously exposed in data breaches. This has been made possible

through sophisticated password guessing techniques [12, 27, 30, 34]

and the emergence of hardware such as GPUs [13]. It is worth not-

ing that these data breaches are often detected after several months

or years, when the attackers had well exploited the data and then

posted (or sold) it online [32]. For this reason, Wang et al. [32]

highlight the need for active, timely password-breach detection

methods to enable responsive counter-actions.

Various methods, such as machine-dependent functions [1], dis-

tributed cryptography [7], and external password-hardening ser-

vices [25], make offline password guessing harder. However, all

these approaches have significant limitations, e.g., they have poor

scalability or they require significant changes to the server-side and

client-side authentication systems, which prevent the community

from applying them [32]. A promising approach, proposed by Juels

and Rivest [22], is to utilise honeywords: false passwords associated
with each user’s account for detecting password leakage. Even if

an attacker steals and reverts the password file F , containing the
users’ hashed passwords, they must still decide about the real pass-

word from a set of k distinct sweetwords
2
. Using a honeyword to

log in sets off an alarm, as an adversarial attack has been reliably

detected [22]. Honeywords are only useful if it is hard to differen-

tiate them from real world passwords, otherwise a sophisticated

attacker may manage to distinguish them from real world ones

and subvert their security. Thus, the honeywords generation process
is of utmost concern when incorporating this security feature to

existing authentication mechanisms.

Juels and Rivest [22] mention that the honeywords generation
problem is an interesting research direction due to the various as-

sumptions about the knowledge of the adversary as well as the

password-selection behaviour of users. In addition, any proposed

1
https://haveibeenpwned.com/Passwords

2
Each user’s real password and their k − 1 honeywords are called sweetwords.
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HGT should ensure its non-reversibility property, i.e., it has to be

computationally inefficient (or impossible) to go from the enriched

with honeywords password file to the initial password file contain-

ing only the real password for each user. In this paper, we propose

HoneyGen, a practical and non-reversible honeywords generation

framework (see Figure 1). To our knowledge, little to none attention

has been given on the design of efficient and generic honeyword

generation methods. Juels and Rivest [22] proposed four Honey-

word Generation Techniques (HGTs) which have been later shown

to be ineffective to meet the expected security requirements [32].

In this paper, we leverage Machine Learning (ML) to automatically

generate honeywords that are indistinguishable from real pass-

words. Our methodology, being policy agnostic, can be applied to

any potential password-based authentication system with minimal

effort. Furthermore, our ML-based honeywords generation process

supports the generation of honeywords with arbitrary length and

structure. Our approach leverages representation learning tech-

niques [2] to learn useful and explanatory representations from

a massive collection of unstructured data, i.e., leaked password

datasets, and thus generate as realistic as possible honeywords.

We on purpose leverage ML for generating honeywords, since the

intrinsic stochasticity of the utilised models ensure that reversing

the algorithm is computationally hard (see Section 5). Finally, Hon-

eyGen can be applied to other similar problems, such as generating

decoy passwords [24] which are similar to honeywords.

So how do we tackle the honeywords generation problem? One

approach would be to perform data analysis on published or leaked

datasets that contain real passwords and design different chaffing-
by-tweaking 3

techniques with respect to those datasets’ password

distribution. However, this approach would produce honeywords

that only match the leaked datasets’ password policies without

being generic enough.

Another approach would be to generate honeywords using a

probabilistic model that returns as honeywords the top-k nearest

neighbours of a particular password from each operator’s password

corpus. The produced honeywords using this approach would have

the following benefits: (a) they will match each operator’s password

policies, (b) they will accurately model the password selection be-

haviour of each website’s users and (c) they will be realistic looking

as they are essentially the actual passwords of other users. How-

ever, this technique has a limited honeywords generation spectrum

as no new honeywords can be generated apart from those that

already exist in each operator’s password corpus. In addition, this

HGT does not ensure the non-reversibility property as a potential

(sophisticated and with large resources) attacker might reproduce

the operator’s model used for generating the honeywords by train-

ing kn (k : no. of sweetwords per user, n: no. of registered users)

different word embeddings models, one for each possible password

file F created by considering only one sweetword per user account.

In this paper, our key insight is that it is possible to have the

best of both approaches by using a hybrid HGT that combines the

benefits of the two aforementioned generation methods, while also

guaranteeing the non-reversibility property. More specifically, our

approach is split into two phases. At a first phase, we train an ML

3Chaffing-by-tweaking techniques perturb certain characters of the real password,

according to some heuristics, to generate honeywords.

model on the password corpus, which allows to learn the structure

of the input and produce a word embedding for each password. By

doing so, we are able to query the word embeddings ML model for

the top-k nearest neighbours of a given password. Then, at a second

phase we issue a chaffing-by-tweaking technique for perturbing

(in a minimal way) the returned passwords in order to generate

out-of-vocabulary (OOV) honeywords.

We employ a two-fold methodology for evaluating HoneyGen’s

performance on generating indistinguishable to the real passwords

honeywords. In particular, we perform both a quantitative and qual-
itative evaluation by using the state-of-the-art metrics (proposed in

[32] and [22]) and conducting a user study with human participants.

As a result, we can safely conclude about the actual resistance of

our framework against sophisticated distinguishing attackers.

Our contributions can be summarized as follows.

(1) We introduce HoneyGen, a practical and highly performing
framework for generating indistinguishable to the real pass-

words honeywords. HoneyGen outperforms the state-of-the-
art HGTs in terms of minimizing the adversary’s success rate

on distinguishing the real password from the honeywords

and meets the expected security requirements, i.e., ϵ-flatness
[22], flatness graph [32] and success-number graph [32].

(2) We leverage representation learning techniques to generate

high-quality, i.e., realistic looking, honeywords. In addition,

we take advantage of the stochasticity of the utilised ML

models to ensure the non-reversibility of our solution.

(3) We perform both a quantitative and qualitative evaluation of

our framework’s performance by utilising the state-of-the-

art metrics proposed in [22] and [32], and by conducting a

user study with human participants. Our results suggest that

HoneyGen is highly effective on timely detecting, in terms of

minimizing the attackers’ successful guesses before raising

an alarm, the leakage of password file F against sophisti-

cated attackers. In particular, HoneyGen causes adversaries

to achieve low distinguishing (of the real password) success

rates approximating those of the random guessing attack

(optimal solution).

(4) We utilise the largest and most diversified collection of real

password datasets ever used for evaluating any HGT, at

least to our knowledge. In particular, our passwords datasets

are composed of over 813 million plain-text passwords and

involve 13 different web services.
(5) We experimentally demonstrate that larger length passwords,

not only have increased entropy (and thus improved secu-

rity), but also lead to honeywords that are more resistant

against sophisticated attackers. In addition, we revisit the

suggestion regarding the total number of sweetwords per

user that Juels and Rivest gave in [22], i.e., 20, and show

that HoneyGen allows for larger numbers of sweetwords

per user, i.e., k > 20, without sacrificing the quality of the

produced honeywords.

(6) To foster further research on this topic and ease reproducibil-

ity, we release the entire code for all of our experiments
4
.

4
https://bitbucket.org/srecgrp/honeygen-generating-honeywords-using-

representation-learning
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2 PRELIMINARIES
Honeywords:How itWorks.The emergence of high-performance

computing systems, such as GPUs or large-scale distributed clusters,

and the dedicated password-cracking hardware [16] made potential

adversaries capable of inverting most (if not all) of the password

hashes in the password file F [22]. Thus, once an adversary has

successfully obtained F , it is realistic to assume that the majority

of the passwords can be offline guessed [32].

Honeywords reliably detect a password file F leakage by associat-

ing each user’s account with k −1 honeywords, i.e., false passwords
[22]. This is because, even if an attacker A has retrieved a copy of

the password file F , and every other values required, e.g., salt, to

compute the hash function h(), and has successfully recovered all

the passwords, e.g., using brute-force or other password guessing

techniques [30], she has to first tell apart each user’s real password

from a set of k − 1 intentionally generated and realistic looking

honeywords [22]. An online login attempt using a honeyword will

set off an alarm, while also indicating a password file compromise

at the server. However, the adversary still has 1/k chances of se-

lecting a user’s real password and successfully (and undetectably)

impersonate them. This approach is rather practical to be applied

to existing authentication systems as it requires minimal changes
to the server-side system and no changes to the client-side system

[32]; yet it is very effective even with a modest chance of catching

an adversary, e.g., for k = 4 the chance to catch an adversary is

3/4 = 75%. Although we are not aware of any web site that uses

honeywords in practice, there is active research in the field, e.g.,

[32].

The Honeywords Generation Problem. Generating honey-

words is a challenging problem mainly due to the various assump-

tions about the knowledge of the adversary as well as the password-

selection behaviour of human users [7, 9, 14, 17, 22]. The success of

HGTs lies on the quality of the resulting honeywords; the method

fails if an adversary can easily distinguish the real password from

the honeywords [22]. Juels and Rivest proposed four legacy user-

interface (UI) HGTs which are heavily based on random replace-

ment of letters, digits and symbols, and thus inherently unable to

resist semantic-aware attackers [32].

Juels and Rivest proposed an evaluation metric for measuring

the security of HGTs, namely ϵ-flat, which essentially measures

the maximum success rate ϵ that a potential adversary A can gain

by submitting only one online guess, when given each user’s k
sweetwords [22]. A perfectly flat, i.e., 1/k-flat, HGT means that

an adversary who has compromised the password file F and suc-

cessfully recovered all k sweetwords of each user, has at most 1/k
chances of selecting the correct password from each user’s list of k
sweetwords. However, the authors note that while a 1/k-flat HGT
is ideal, a HGT may be effective even if not perfectly flat.

Later, Wang et al. [32] proposed two evaluation metrics, namely

flatness and success-number graphs, for addressing the limitations of

the ϵ-flat evaluation metric (see Section 4). Among the rest, the au-

thors reveal that generating equally probable to the real password

honeywords, using random replacement techniques, is inherently
impossible [32]. Thus, they evaluate Juels and Rivest HGTs and show
that they all fail to achieve the expected security requirements. In

addition, Wang et al. [32] demonstrate that probabilistic password

guessing models cannot be adapted to generate high quality honey-

words (which was a common belief in [22]). Thus, the community

should focus on developing new HGTs that will effectively meet

the expected security requirements.

Users’ Password Selection Behaviour. Human selected pass-

words, even if long and sprinkled with extra characters, must still

be easy to remember [29]. Thus, human users will always tend

to include a memorable substring in their passwords despite the

strict (in some cases) composition rules, that require passwords to

be drawn from specific regular languages and include digits and

non-alphanumeric characters [29]. For example, Weir et al. [34]

observed that 50% of the passwords that contain a single digit, that

digit is the number 1. Thus, a potential adversary could utilise this

observation to exclude the honeyword selections that contain a dif-

ferent digit. However, such probability estimation techniques might

not reflect the actual password distribution of each web service

and thus, not achieve high-enough attack success rates on a set of

different authentication systems employing dramatically different

password policies.

A more intuitive approach is to bias the HGT towards the most

likely to be chosen by users password space [22]. This, will de-

crease the adversary’s ability of distinguishing the real password

from the honeywords based on their unlikeness to be chosen by

human users. Thus, understanding the way users select their pass-

words will help the community to identify and support specific

assumptions and policies applied as well as generate high quality

and plausible honeywords [4]. In particular, for a HGT to be effec-

tive, it should somehow incorporate the users password selection

behaviour while also being generic enough (or easily tunable) to

meet each operator’s password policies.

Word Representation Learning. A popular idea in modern

ML is to represent words by vectors which capture hidden informa-

tion about a language, like word analogies or semantics. Represen-

tation learning techniques are even used to train deep architectures

for CAPTCHA solving [11] or protein secondary structure predic-

tion [10]. Word embedding techniques aim to map words or phrases

from the vocabulary to vectors of real numbers, the Word2Vec [28]

being the most popular one. Word2Vec [28] is a group of ML mod-

els used to produce word embeddings (typically of several hundred

dimensions) given a large corpus of text with each distinct word

in the corpus being assigned a corresponding vector in the latent

space. Words that share common contexts and thus similar char-

acteristics/semantics are located close to each other in the latent

space [28].

Word2Vec [28], FastText [21] and other popular word embed-

ding techniques, utilise Continuous Bag of Words (CBOW) or Skip-

gram models, based on Artificial Neural Networks (ANNs), to learn

the underlying word representations. In the CBOW model [28] the

ANN predicts the current word given a window of surrounding

context words. Contrary, the Skip-gram model [28] uses the cur-

rent word to predict the surrounding window of context words by

weighting nearby context words more heavily than more distant

ones [28]. Generally speaking, CBOW is faster while Skip-gram

has better performance (especially for rare words) [28].

FastText represents each word as a bag of character n-grams. A

vector representation is associated to each character n-gram; words

being represented as the sum of these representations [3]. Since
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Figure 2: HoneyGen’s generation pipelines. Sub-figures (a),
(b) and (c) represent the chaffing-by-tweaking, chaffing-
with-a-password-model and chaffing-with-a-hybrid-model
HGTs, respectively. Chaffing-with-a-hybrid-model HGT
combines (a) and (b) by producing k/2 honeywords using
(b) and then generating another k/2 honeywords by issu-
ing chaffing-by-tweaking on the returned, by chaffing-with-
a-password-model HGT, honeywords. For each newly regis-
tered user pair {useri ,RPi } (or batch of user pairs), (b) and
(c) HGTs can update (retrain) their word embeddings model,
i.e., FastText , before generating k sweetwords for useri .

FastText exploits subword information, it can also compute valid

representations for OOV words by taking the sum of its n-gram
vectors. In our case, FastText is the only useful word embedding

technique as the majority of users’ selected passwords are OOV

words due to either password polices or users’ choice. As a result,

FastText will still be able to compute a word embedding for each

given password by summing up the matched n-gram vectors. Note

that website operators store users’ passwords in a hashed format for

increased security [22]. However, FastText allows for the continu-

ation of the model’s training every time a new password (or a batch

of passwords) is entered. Thus, HoneyGen will actively train the

word embeddings model on each given password before storing its

hashed format and deleting its plain-text one. In our experiments,

we use FastTextwith minCount=1, minn=2, and model=skipgram.

3 HONEYGEN
The common intuition is that the users select passwords that are

easy to remember [4, 35] often reusing them across multiple sites

[24]. Thus, we exclusively design HoneyGen’s generation pipeline

to incorporate the human-memorable factor of users’ password-

selection behaviour. In doing so, we leverage representation learn-

ing techniques to learn useful and explanatory representations

from a massive collection of unstructured data, i.e., each opera-

tor’s password database, and thus generate as realistic as possible

honeywords that approximate the password distribution of each

authentication system. We propose (and later evaluate) three HGTs:

(a) a chaffing-by-tweaking technique, (b) a chaffing-with-a-password-
model technique and (c) a hybrid method that combines the two

aforementioned techniques, for generating indistinguishable, to the

real passwords, honeywords.

Figure 2 shows HoneyGen’s generation pipeline for each of the

aforementioned honeyword generation approaches. HoneyGen is

explicitly designed to be applicable on any password-based authen-

tication system using any kind of password policies. Thus, each

operator can utilise HoneyGen for generating system-specific hon-

eywords, that satisfy the deployed password policies, without the

risk of subverting the system’s security. Although our HGTs are

explicitly designed to minimize the risk against targeted-guessing
attackers [32], who can exploit the victim’s Personally Identifiable

Information (PII) such as their birthday or phone number, in this

paper, we focus only on trawling-guessing 5
attackers for evaluating

HoneyGen’s performance, as all of our datasets are comprised of

passwords only and not any other relevant to the users’ PII.

Chaffing-by-Tweaking. Numerous heuristic-based chaffing-
by-tweaking HGTs have been proposed in [22]. When chaffing the

passwords onemust be careful not to subvert the security of the gen-

erated honeywords so the attacker cannot tell the password from its

tweaked versions. For example, if a chaffing-by-tweaking technique

randomly perturbs the last three characters of a password, then, in

the example “57*flavors”, “57*flavrbn”, “57*flavctz” the ad-

versary can easily tell that the real password is the first one [22]. In

other words, any proposed chaffing-by-tweaking technique must

take into explicit consideration potential semantic-aware attackers
in order to be useful [8, 14]. As shown in Figure 2a, HoneyGen’s

chaffing-by-tweaking operation is straightforward. First, it receives

as input each operator’s password file F containing n records (one

for each user) with real passwords and later responds with a list

of size k × n, where each password in F is associated with k − 1
honeywords.

After performing some data analysis on the 13 datasets of leaked

passwords (shown in Table 3) we observe the following: on average,

(a) 89.85% of the symbols included in a given password are the

same and (b) 94.77% and 5.23% of the letters contained in a given

password are lower-case and upper-case, respectively. Thus, in

our chaffing-by-tweaking strategy we choose to replace all the

occurrences of a particular symbol in a given password with a

randomly selected and different one. In addition, we choose to

lower-case each letter of a password with a higher probability than

upper-casing it. Furthermore, we choose to replace each digit in a

given password with a small probability in order to mitigate the risk

against targeted-guessing attackers [32] who can exploit the victim’s

PII. Note that HoneyGen adaptively increases those probabilities in

case the algorithm produces the same honeywords for a number of

(predefined) times. As a result, HoneyGen can be even applied on

authentication systems that contain passwords with low entropy.

We choose to chaff the generated passwords in a minimal way

in order to avoid any obvious discrimination between the real

passwords and the honeywords. Our chaffing algorithm, shown

in Algorithm 1 (Appendix A), perturbs a honeyword in 3 differ-

ent levels. First, the algorithm lower-cases and upper-cases each

letter with respect to a probability p and f , respectively. Second,
it replaces each digit occurrence with respect to a probability q.
Third, for each symbol found in the given password, it replaces

all of its occurrences with a randomly selected and different one

with respect to a probability p. Selecting the initial values for the

5Trawling-guessing attackers do not have access to the victim’s PII.
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Table 1: Honeyword samples generated using our chaffing-
by-tweaking HGT (see Algorithm 1 - Appendix A).

Passwords: littleDog timmy3531 cri;cri;

Chaffed
Honeywords:

LittledoG timmY3531 Cri@cri@

littledog Timmy3531 cri!cri!

littleDoG TImmy6531 cri#CRi#

LIttledog timmy3731 cri@cri@

probabilities f , p and q is of major importance as they largely affect

the produced honeywords’ deviation from the real password. Ac-

cording to the analysis results mentioned in the previous paragraph

and based on experimentation with different initial values we set

p = 0.3, f = 0.03 and q = 0.05.

Our chaffing-by-tweaking algorithm produces honeywords by

limiting the perturbations made to the real password and taking

into explicit consideration the user’s password selection behaviour

in order to generate realistic honeywords. In particular, we choose

to lower-case or upper-case each letter occurrence instead of re-

placing it with a different letter in order to avoid any potential

security degradation of the generated honeywords such as the one

introduced by the chaffing-by-tail-tweaking method proposed by

Juels and Rivest [22]. In addition, we choose to replace each digit

occurrence with a small probability to mitigate the risk against

targeted attackers that exploit the victim’s PII. Finally, we replace

each occurrence of each particular symbol in a given password with

a randomly selected and different one with a larger probability as

symbols usually do not exhibit any significant semantic informa-

tion to the attacker. Some honeyword samples, generated using our

chaffing-by-tweaking HGT, are shown in Table 1.

Chaffing-With-a-Password-Model.Chaffing-with-a-password-

model techniques generate honeywords using probabilistic mod-

els based on high volume lists of real passwords [22]. This HGTs

produce honeywords that are more realistic looking compared to

chaffing-by-tweaking HGTs as they approximate the users’ pass-

word selection behaviour in a more sensible way [32].

As shown in Figure 2b, the first step in HoneyGen’s chaffing-

with-a-password-model technique requires a password corpus. This

password corpus acts as the training dataset for our word embed-

dings technique, i.e., FastText. After successfully training ourword
embeddings model

6
we can query it by giving a real password as

input and receiving as a response an x-dimensional (in our case

100-dimensional) vector representing the word embedding of the

given password. Next, for constructing the list of k ×n sweetwords,

we iterate over each password included in our passwords’ corpus (n
records in total) and return its top-k nearest neighbours in decreas-

ing order of cosine similarity. As a result, we create a list containing
the k most similar passwords, i.e., honeywords, for each password

included in the password file F . Note that the generated passwords

are different for different password databases.

In order to develop a proof-of-concept for our chaffing-with-a-

password-model HGT we utilise RockYou dataset [6] containing

6
Note that a detailed analysis regarding the influence of the hyper-parameters’ values

to the final model is out of the scope of this paper.

Table 2: Honeyword samples generated using our chaffing-
with-a-password-model HGT. The word embeddings ML
model has been trained on the RockYou dataset [6].

Passwords: loverose1 lavonda1 marino40

Chaffed
Honeywords:

loverose21 lafonda1 marino54

loverme23 lagonda1 marina40

loveernie1 lavonta1 marino25

loverose01 lavenda1 marinos3

14, 341, 497 leaked passwords as the training dataset. However, gen-

erating honeywords solely based on published or leaked password

databases is not a good idea as such lists may also be available to

potential adversaries, who might use them to identify the honey-

words in the password file F [22]. Thus, we underline that each

operator should train our chaffing-with-a-password-model on their

password database, not only for mitigating the aforementioned risk,

but also for the produced honeywords to comply with the deployed

password policies. Some honeyword samples, generated using our

chaffing-with-a-password-model HGT, are shown in Table 2.

Chaffing-With-a-Hybrid-Model.Chaffing-with-a-hybrid-model

techniques combine the benefits of multiple honeyword generation

strategies [22]. Despite the efficiency as well as the sophistication

of chaffing-by-tweaking techniques, they cannot generalize well
on dramatically different password corpus from the ones used for

forming those functions. A potential attacker is capable of sub-

verting the security of honeywords that only deploy chaffing-by-

tweaking techniques by calculating cumulative statistics about the

password file F . On the other hand, the probabilistic chaffing-with-a-

password-model technique suffers from the limitation that it cannot

produce honeywords that are not included in the initial password

corpus. Although this is not a direct implication for the security

of the produced honeywords it dramatically limits the available

honeywords generation spectrum and thus, the computational time

needed for recovering the plain-text versions of the hashed pass-

words included in the password file F . As a result, in order to avoid

the individual defects of our chaffing-by-tweaking and chaffing-

with-a-password-model HGTs, we choose to combine them and

create a hybrid model that produces high-quality, indistinguishable

to the real passwords, honeywords. As a result, we will further limit

the adversary’s success rates on distinguishing the real passwords

from the honeywords.

Figure 2c shows the honeyword generation pipeline for our

hybrid method. First, we train the word embeddings model, i.e.,

FastText, on the password corpus. Second, we utilise the trained

word embeddings model to produce l (l < k) honeywords for each
real password included in the password corpus. Third, we issue

our chaffing-by-tweaking technique to perturb the l honeywords
retrieved from our word embeddings model in order to finally

produce k sweetwords in total for each user pair {useri ,RPi }.
HoneyGen’s Applicability. HoneyGen can be applied to any

modern authentication system with minimal effort. In particular,

for already running password-based authentication systems the

operators can invite users to re-enter their passwords in order to

collect the plain-text versions of the already stored hashed pass-

words issuing, afterwards, the HoneyGen’s honeywords generation
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Table 3: The real password datasets used forHoneyGen’s per-
formance evaluation in chronological order of data breach
year (derived from temp.hashes.org).

Dataset Total Entries Data Breach Year

phpbb 183440 2009

rockyou 14341497 2009

linkedin 60649463 2012

dropbox 10278958 2012

yahoo 5953057 2013

myspace 51283076 2013

last.fm (2016) 20510674 2016

adultfriendfinder 36892926 2016

youku 47633248 2016

chegg 20103871 2018

dubsmash 22106265 2018

have-i-been-pwned-v2 501444649 2018

zynga 42343670 2019

process. In addition, in order to minimize the computational over-

head for retraining the word embeddings model, i.e., FastText,
and computing the top-k nearest neighbours for each password,

we advice systems’ operators to retrain their word embeddings

model every 1, 000 newly registered users, i.e., 1, 000 newly created

passwords.

4 HONEYGEN EVALUATION
In this section, we evaluate HoneyGen’s performance on creating

indistinguishable to the real password honeywords. To do so, we

deploy the evaluation metrics proposed in [22] and [32], and con-

duct a user study asking human participants to distinguish the

real password from a list of k sweetwords. We choose to use two

different methodologies for evaluating HoneyGen’s performance,

i.e., quantitative and qualitative, in order to avoid any bias regard-

ing the datasets used as well as the adversary’s knowledge and

capabilities when trying to distinguish the real passwords from the

honeywords. Note that we run all of our attacks on a 4-core Xeon

machine with 64GB of memory.

Datasets. We evaluate HoneyGen’s performance based on 13

datasets containing real-world passwords (see Table 3). In total, our

passwords datasets are composed of over 813 million plain-text pass-
words and involve 13 different web services. To our knowledge, this
is the largest and most diversified collection of real passwords ever

used for evaluating any HGT. The majority of the utilised datasets

may disclose the recent password selection behaviour of users as

some of them have recently leaked by hackers or insiders. Note

that we process those datasets and select only the passwords with

length ≥ 8 as the majority of the top-50 popular websites ranked by
alexa.com as of November 2020, including Google, Microsoft, Face-

book, and many others require the use of at least 8 characters for

any selected password. In addition, we randomly select 50, 000 real

passwords from each leaked dataset volume in order to facilitate

the evaluation process of our HGT, without loss of generality. Table

3 shows the password datasets used for evaluating HoneyGen’s

performance in chronological order of data breach year.

Quantitative Evaluation. The ϵ-flat evaluation metric pro-

posed by Juels and Rivest [22] measures the maximum success rate

ϵ that an attacker can gain by submitting only one online guess to a
system. However, this method falls short in two cases: (a) when the

attacker is allowed to make more than one guess per user and (b) on

identifying a system’s most vulnerable honeywords, i.e., those that

can be easily distinguished [32]. Thus, Wang et al. [32] proposed

two new metrics, namely flatness graph and success-number graph,
that measure a HGT’s resistance against honeyword distinguishing

attackers, for tackling the two aforementioned problems.

Flatness graph plots the probability of distinguishing the real

password versus the number of allowed sweetword login attempts

per user x (x ≤ k) [32]. The flatness graph showcases the average
resistance of a distinguishing attacker for each allowed number of

guesses per user. A perfect HGT allows for a maximum of x × 1/k
success rate for each allowed sweetword login attempts per user x .

Success-number graph plots the total number of successful login

attempts, i.e., login with a real password, versus the total number of

failed login attempts, i.e., login with a honeyword [32]. The success-

number graph measures to what extent a method will produce

vulnerable honeywords that could be easily distinguished. A perfect
HGT produces k sweetwords per user with the same probability of

being the real password. For the success-number graphs we only

consider the worst case scenario where the attacker can perform

k online guesses, i.e., use all the given sweetwords until the real

password is found.

Wang et al. conduct a honeyword distinguishing attack, namely

Normalized Top-PW, in order to gather the appropriate statistics

for plotting the two aforementioned graphs. In particular, given

an adversary A and a password file F of n × k sweetwords (where

n is the total number of users and k the number of sweetwords

per user, e.g., 20 as suggested in [22]), A tries to find as many

as possible real passwords before making T2 failed honeyword

login attempts in total. Note that A can only make at most T1 login
attempts per user. A tries each of these k sweetwords per user in

decreasing order of normalized probability, where the probability

of each sweetword swi , j (1 ≤ i ≤ n and 1 ≤ j ≤ k) comes directly

from a known probability distribution of a leaked password dataset

D like the RockYou [6] or LinkedIn [23] and is calculated as follows.

For each sweetword that exists inD then Pr (swi , j ) = PD (swi , j ) else

Pr (swi , j ) = 0. ∀x ∈ D, PD (x) = Count(x)/|D |, where Count(x) is
the number of occurrences of x inD and |D | is the size of the leaked
passwords dataset D. Note that the normalized Top-PW adversary

first attacks the vulnerable user accounts, i.e., the user accounts for
which their most probable honeyword is closest to 1. For doing so,

we normalize each user’s k sweetwords as follows. ∀swi , j ∈ n × k

sweetwords, Pr (swi , j ) = Pr (swi , j )/
∑k
t=1 Pr (swi ,t ). If the system

allows more than one honeyword login attempt, i.e., T1 > 1, after

a sweetword has been attempted, the probability of all the other

unattempted sweetwords should be re-normalized. Our naming

conventions are inspired by the formalism of Wang et al. [32].

For evaluating the 4 HGTs proposed by Juels and Rivest [22],

Wang et al. [32] employ a half-half strategy by using the first half

as the target dataset, i.e., to generate honeywords for each real

password and later try to distinguish the real password from the

k sweetwords, and the second half as the attacker dataset, i.e., the
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leaked dataset D to be used for launching their attack described in

the previous paragraph. In contrast to Wang et al. [32], for eval-

uating HoneyGen’s performance, we do not deploy this half-half
strategy and we instead use two different datasets one for the target
and one for the attacker. By doing so, we are able to explore the

worst case scenario where the target and attacker datasets are drawn
from a different distribution. This scenario is the most realistic one as

different websites/systems usually make use of different password
policies thus having different password distributions [30, 32, 33]. Note
that we do not consider targeted-guessing attackers [32] who can ex-
ploit the victim’s personal information, for evaluating HoneyGen’s

performance, as all of our datasets are comprised of passwords only

and not any other relevant to the user PII.

Results. Figure 3 shows the flatness (3(a)-3(c)) and success-

number graphs (3(d)-3(f)) when attacking each HGT proposed as

part of HoneyGen framework, having the RockYou as the target

dataset (for which the attacker has to distinguish the real pass-

word from the list of n × k sweetwords) and each of the remaining

datasets as the attacker dataset D (used to compute the probability

of each sweetword as described in the normalized Top-PW attack).

Sub-figures 3(a)-3(c) reveal that our chaffing-by-tweaking, chaffing-

with-a-password-model and chaffing-with-a-hybrid-model HGTs

are 0.17+-flat, 0.04+-flat and 0.08+-flat, respectively, the optimal

HGT being 1/k = 0.05-flat. Those results indicate that our chaffing-

by-tweaking HGT is ≈ 3× weaker than expected in [22], whereas

the two other two HGTs are very close to achieving the optimal flat-

ness. Sub-figures 3(d)-3(f) show that the normalized Top-PW attack-

ing strategy can distinguish 120, 1 and 4 real passwords (the optimal

HGT allowing for a total of ⌊T2/(k − 1)⌋ = ⌊61/19⌋ = 3 success-

ful password guesses) against our chaffing-by-tweaking, chaffing-

with-a-password-model and chaffing-with-a-hybrid-model HGTs,

respectively, when allowedT2 = 61 honeyword logins, which is the

equivalent threshold of the total number of allowed login attempts

using a honeyword that Wang et al. used in [32] with respect to

each target dataset’s size. However, we set T1 = 20 to explore the

worst-case scenario in contrast to Wang et al.’s evaluation where

they only allow 1 login attempt per user account, i.e., T1 = 1. We

conduct the same attack, i.e., normalized Top-PW, using each of

the 13 datasets (shown in Table 3) as the the target dataset and

the remaining ones as the attacker dataset D. Nonetheless, due to
space constrains and because we observe similar results we omit

including each one of them. However, these results are taken into

consideration in a later graph, i.e., Figure 4, which shows the average
flatness and success-number graphs for each HGT.

Table 4 shows the average attack success rates achieved on each

HGT, using each of the 13 datasets shown in Table 3 as the target

dataset and each of the remaining ones as the attacker dataset D.
When allowing 61 failed attempts, i.e., logins using a honeyword,

0.1196% ∼ 0.9953% accounts of the 13 target datasets can be suc-

cessfully guessed. Observing the results reported in Table 4, one can

easily see that the chaffing-with-a-password-model HGT performs

better than the other HGTs as it causes the attacker to achieve the

lowest attack success rates on average. The 2nd best performing

HGT (by a small margin, i.e., 0.0669%, from the highest performing

HGT) is the chaffing-with-a-hybrid-model HGT. Finally, the worst

performing, i.e., least secured, HGT is the chaffing-by-tweaking.
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Figure 3: The flatness (3(a)-3(c)) and success-number (3(d)-
3(f)) graphs using RockYou as the target and each of the
other datasets as the attacker dataset D, for each HGT. The
closer to the random guessing baseline, the better the corre-
sponding HGT is.

Table 5 shows the ϵ-flatness results for each HGT, using each of

the 13 datasets shown in Table 3 as the target dataset. Again, the

chaffing-with-a-password-model HGT performs consistently well

achieving the lowest ϵ-flatness on average, i.e., 0.0866, compared to

the other two HGTs. In particular, chaffing-with-a-password-model

HGT almost achieves the optimal ϵ-flatness, which is 1/k = 1/20 =

0.05. However, even the ϵ-flatness results achieved from chaffing-

with-a-hybrid-model and chaffing-by-tweaking HGTs are not bad at

all being 2× and 3× weaker, respectively, than the optimal solution.

This is because a HGT may be effective even if not perfectly flat

[22]. Finally, the worst performing, i.e., least secured, HGT is again

the chaffing-by-tweaking.

The average flatness and success-number graphs for each HGT

proposed in this paper are shown in Figure 4. As shown in sub-

figure 4(a), on average, the chaffing-by-tweaking HGT is 0.18-flat

and ≈ 3×weaker than the optimal ϵ-flatness, i.e., 0.05. The chaffing-

with-a-hybrid-model HGT is 0.12-flat and ≈ 2× weaker than the

optimal ϵ-flatness. Finally, the chaffing-with-a-password-model
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Table 4: The average attack success rates (%) achieved
on our chaffing-by-tweaking (tweaking), chaffing-with-a-
password-model (model) and hybrid HGTs for each target
dataset (T1 = 20, T2 = 61, k = 20). A value in bold means
that the corresponding HGT performs best, while a value in
italics means that it performs the worst.

Target Dataset Tweaking Model Hybrid

phpbb 0.8639% 0.0239% 0.0279%

rockyou 0.2399% 0.0019% 0.0079%

linkedin 0.1859% 0.0039% 0.0079%

dropbox 0.6439% 0.1499% 0.0899%

yahoo 8.1398% 0.4519% 1.4139%

myspace 0.5839% 0.0719% 0.0459%

last.fm (2016) 0.2619% 0.0039% 0.0099%

adultfriendfinder 0.3779% 0.0039% 0.0079%

youku 0.0759% 0% 0%
chegg 0.0899% 0.0019% 0.0019%

dubsmash 0.8899% 0.6679% 0.6779%

have-i-been-pwned-v2 0.2019% 0% 0.0019%

zynga 0.3839% 0.1739% 0.1319%

Average 0.9953% 0.1196% 0.1865%

Table 5: ϵ-flatness results for our chaffing-by-tweaking
(tweaking), chaffing-with-a-password-model (model) and
hybrid HGTs for each target dataset (T1 = 1, k = 20). A value
in bold means that the corresponding HGT performs best,
while a value in italics means that it performs the worst.

Target Dataset Tweaking Model Hybrid

phpbb 0.2803 0.1222 0.1792

rockyou 0.1141 0.0402 0.0777

linkedin 0.0855 0.0323 0.0559

dropbox 0.2832 0.1443 0.2052

yahoo 0.1790 0.0599 0.0986

myspace 0.2285 0.1163 0.1702

last.fm (2016) 0.1175 0.0383 0.0661

adultfriendfinder 0.1349 0.0432 0.0786

youku 0.0545 0.0201 0.0345

chegg 0.0831 0.0284 0.0542

dubsmash 0.4359 0.2975 0.3572

have-i-been-pwned-v2 0.0700 0.0230 0.0374

zynga 0.2976 0.1611 0.2371

Average 0.1589 0.0866 0.1270

HGT is 0.08-flat with aminor difference, i.e., 0.03+, from the optimal

ϵ-flatness. The ϵ-flat results are by default with T1 = 1. However,

the flatness graph/metric proposed by Wang et al. [32] explores the

attack success rate when the adversary is allowed to make more

than 1 guesses. In particular, the flatness graph provides a view of

the average resistance against a distinguishing attacker with varied

guess numbers per user all the way to k [32]. Thus, the closer to

the random guessing baseline, the better the corresponding HGT is.

As shown, the chaffing-with-a-password-model and chaffing-with-

a-hybrid-model HGTs perform comparably well on approximating

the random guessing baseline.
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Figure 4: The average flatness and success-number graphs
for each HGT. The closer to the random guessing baseline,
the better the corresponding HGT is.

Sub-figure 4(b) shows the average success-number graphs for

our three HGTs. The experimental results show that the chaffing-

with-a-password-model and chaffing-with-a-hybrid-model HGTs

cause the normalized Top-PW attacker to achieve lower attack

success rates than the random guessing baseline HGT. This is a

clear evidence regarding the resistance of these two HGTs against

sophisticated distinguishing attackers.

All the results reported in this section showcase that the chaffing-

with-a-password-model and chaffing-with-a-hybrid-model HGTs

generate high-quality honeywords which are indistinguishable

from the real passwords. We came to this conclusion by utilising

the three state-of-the-art evaluation metrics, namely ϵ-flatness [22],
flatness graph [32] and success-number graph [32], for HGTs. The

soundness of the reported results is further strengthened by the

fact that we utilise a large pool, i.e., 813
+
million, of real passwords

and by involving 13 different web services which inherently have

different password distributions. Finally, our results suggest that

the normalized Top-PW attacking strategy is by no means optimal.

Figure 5 shows the ϵ-flatness and success-number comparison

of our HGTs and those proposed in [32] and [22]. As shown, our

HGTs achieve both a lower ϵ-flatness and lower success-number

of successful password guesses, thus, offering increased security,

compared to the HGTs proposed by Juels and Rivest [22] and Wang

et al. [32]. More specifically, our framework, i.e., HoneyGen, offers

HGTs that achieve 1.7+× and 2.5+× lower ϵ-flatness and 13.3+×

and 30.9+× lower successful password guess rate for the equivalent

total number of allowed guesses with a honeyword T2, compared

to the HGTs proposed in [32] and [22], respectively.

Implications of Normalized Top-PW attack. The normalized Top-

PW attack assumes that the recovered password file F shares com-

mon features and characteristics with the leaked password dataset

D used to compute the probability Pr (swi , j ) for each sweetword.

Nonetheless, in reality, password distributions differ greatly for

each website/authentication system [30, 33]. Thus, the normalized

Top-PW distinguishing attack, proposed by Wang et al. [32], is

inherently unable to achieve high attack success rates against au-

thentication systems that deploy dramatically different password

polices from the policies used for forming each password in the

leaked password dataset D.
However, in case of significant overlap between the password

file F and the leaked dataset D a potential attacker can achieve
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Figure 5: Comparison of the ϵ-flatness and success-number
of our HGTs and these proposed in [32] and [22]. The lower
ϵ-flatness and success-number a HGT reports the better.

significantly high attack success rates given that the deployed HGT

does not produce honeywords in respect to the distribution of the

password file F (e.g., chaffing-by-tweaking). The chaffing-with-

a-password-model (and as a consequence chaffing-with-a-hybrid-

model) HGT described in Section 3, takes into explicit consideration

the distribution of the password file F by producing honeywords

that are actual passwords of other users of a particular authentica-

tion system. This is the main reason for observing a decrease of the

attack success rates on the chaffing-with-a-password-model and

chaffing-with-a-hybrid-model HGTs compared to the attack success

rates achieved on the chaffing-by-tweaking HGT (see Figure 4).

The results reported in this section demonstrate that the chaffing-

with-a-password-model and chaffing-with-a-hybrid-model perform

comparably well. However, chaffing-with-a-hybrid-model dramat-

ically increases the honeywords generation spectrum compared

to chaffing-with-a-password-model HGT, as it can generate hon-

eywords that do not exist as real passwords in each operator’s

password corpus. As a consequence to increasing the honeywords

generation spectrum, chaffing-with-a-hybrid-model also decreases

the attacker’s efficiency on recovering the plain-text format of the

hashed passwords in the password file F , compared to the chaffing-

with-a-password-model HGT. The larger honeywords generation

spectrum of chaffing-with-a-hybrid-model increases the probabili-

ties of this HGT to be effective even against other, more sophisti-

cated, adversaries that may employ a completely different attacking

strategy compared to the normalized Top-PW attack proposed in

[32]. Thus, chaffing-with-a-hybrid-model HGT is expected to sur-

pass the performance of chaffing-with-a-password-model HGT, in

terms of producing indistinguishable to the real passwords honey-

words, when tested on a variety of adversaries (especially in the

case that a system has a limited number of registered users).

Due to the lack of a formal evaluation method for HGTs one

should employ a two-fold evaluation strategy, i.e., quantitative and

qualitative, for effectively concluding about their framework’s re-

sistance against distinguishing attackers. So far, we have presented

a large-scale and detailed quantitative analysis utilising a series (13

in total) of leaked real-password datasets that exhibit up-to-date

user password behaviours. Note that for the time being, this is the

largest corpus of real-world password datasets and most compre-
hensive quantitative evaluation of any proposed HGT. In addition,

our real-world password corpus is among the largest and most

diversified ones ever collected for use in a password study, at least

to our knowledge. In our paper, we take one step further into ef-

fectively concluding about the actual robustness of HoneyGen’s

performance by also conducting a qualitative analysis, i.e., user
study, asking human participants to indicate 5 choices in decreas-

ing order of probability of being the real password given a list of

20 sweetwords. Note that we are the first to conduct a user study

for concluding about the effectiveness of our HGT.

Qualitative Evaluation. In order to qualitatively evaluate our

framework’s performance we conduct a user study asking human

participants to distinguish the real password from a list of 20 sweet-

words. By doing so, we can effectively conclude about whether or

not our HGT produces realistic looking honeywords that cannot

be easily distinguished by human users and thus, highly intelligent

adversary agents. All data have been collected in an anonymous

way so we are not obliged to get an IRB approval as we do not

collect any demographic information which might be sensitive.

We compose a questionnaire with 10 questions in total, where

each question contains a list of 20 randomly selected sweetwords

(one of them being the real password). We ask the participants to

select 5 sweetwords in decreasing order of probability of being the

real password, i.e., T1 = 5, from a list of 20 sweetwords, along with

their confidence level when answering each question. After gath-

ering the answers from 33 randomly selected human respondents

we came up with the following graphs: (a) percentage of correct

guesses per allowed number of login attempts, i.e., flatness graph

for T1 = 1 up to T1 = 5, and (b) distribution of confidence when an-

swering each question, i.e., Likert scale questions with 5 points [5].

Note that the honeywords for each question have been produced

using the chaffing-with-a-hybrid-model HGT.

As shown in Figure 6(a) HoneyGen achieves very close to the

random guessing baseline (optimal solution) flatness graph, while

also being 0.06+-flat, the optimal ϵ-flatness being 0.05. Furthermore,

as shown in Figure 6(b) the confidence graph peaks at “neither con-
fident nor not confident” and “not confident” answers. In particular,

40.6% of the respondents felt “not confident” or “not confident at
all” when distinguishing the real password from the honeywords.

Observing all the results reported in this section, one can easily

see that even highly intelligent adversaries, i.e., humans, cannot
distinguish, with high success rates, the real passwords from the

lists of k sweetwords. This fact demonstrates the resistance of our
HGT against highly sophisticated attackers.

5 DISCUSSION
HoneyGen’s Reversibility. In order for a honeyword generation

framework to be useful it has to satisfy two goals. First, it has to
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Figure 6: The flatness graph and the distribution of confi-
dence for the user study’s collected results for T1 = 1 up to
T1 = 5, using chaffing-with-a-hybrid-model.

generate high-quality honeywords that are indistinguishable to

the real passwords. Second, it must be non-reversible, i.e., it has
to be computationally inefficient (or impossible) to go from the

enriched with honeywords password file to the initial password file,

which only contains the real password for each user. Similar to the

extensively used encryption algorithms, the HoneyGen’s robust-

ness against distinguishing attackers does not rely on its algorithm

secrecy (which we make public). In contrast, the non-reversibility

property of our HGT is guaranteed by the stochasticity of the ML-

based honeywords generation model, i.e., FastText. In fact, this

is the main reason for applying ML technologies to generate re-

alistic looking honeywords. The continuous batch retraining of

our ML-based word embeddings model every 1, 000 newly regis-

tered users, dramatically changes its weights’ values and thus, its

previous operation mechanics.

However, HoneyGen ensures its non-reversibility property even

in the case that an operator does not update its initial word em-

beddings model, i.e., HGT, for each batch of newly registered users.

In this case, an adversary can reproduce the operator’s trained

word embeddings model, which meant to be private, by training

kn different word embeddings models for each possible list created

by considering only one sweetword for each user account. This

attack, although computationally expensive, e.g., for a password file

F with 1 million registered users and k = 20 an adversary has to

train 20
1,000,000

different ML models for reproducing the one used

by the operator for generating the honeywords, it may be possible

with more sophisticated attacking strategies. However, chaffing-

with-a-hybrid-model HGT eliminates this problem in an efficient

and effective way. More specifically, chaffing-with-a-hybrid-model

HGT offers an additional step of non-reversibility by perturbing
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Figure 7: The flatness and success-number graphs, using
RockYou as the target dataset, considering passwords with
length 8 and ≥ 12.

the characters of the generated, through our ML-based model, hon-

eywords in a random way (see Algorithm 1 - Appendix A). As a

result, any potential adversary is unable to reproduce the word

embeddings model of a particular operator, thus, guaranteeing the

non-reversibility property of this HGT.

Long Passwords vs. Short Passwords. Long passwords will

most probably have larger entropy than smaller ones. Increasing

a password by 1 bit doubles the number of guesses the attacker

has to perform in order to crack the password. For example, Shay

et al. [31] found that some policies that require longer passwords

provide better usability and security compared with traditional

policies. Thus, we advice the different website operators to deploy

password policies that will force users to select larger (in terms

of length) passwords. This will not only decrease the adversary’s

performance on recovering the hashed passwords but it will also

increase the security of the generated honeywords. In order to

validate this assumption we conduct two experiments by attacking

two different password files F1 and F2 that contain sweetwords

of length 8 and ≥ 12, respectively, using the normalized Top-PW

attacking strategy. We utilise RockYou as the target dataset and each
of the remaining datasets as the attacker dataset.

As shown in Figure 7, F2 is more robust compared to F1 as it
causes the attacker to achieve both lower flatness and lower success-

number results. In particular, F2 is 0.05
+
-flat whereas F1 is 0.09

+
-flat.

In addition, F2 allows only 1 successful guess whereas F1 allows
4 successful guesses, when T2 = 61, on average. As a result, the

length of users selected passwords not only increases their entropy

but also improves the robustness of the generated honeywords.

Number of Sweetwords per User Account. Increasing the

number of sweetwords per user (k) increases the chance that an
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Table 6: Standard deviation (σ ) of the achieved ϵ-flatness
(T1 = 1) and the success-number (T1 = 20,T2 = 5, 000) from
the optimal values, i.e., 1/k for ϵ-flatness and ⌊T2/(k − 1)⌋ for
success-number. The smaller the σ the better.

No. of sweetwords per user (k ) ϵ -flatness σ Success-number σ

20 2.78% 18

40 0.01% 5

60 0.01% 2

80 0.06% 2

100 0.04% 6

160 0.02% 2

200 0.02% 2

adversary gets caught. For instance, if there are k sweetwords per

user, an adversary has 1/k chances of selecting the real password.

However, if there are y sweetwords per user and y > k , then an

adversary has 1/y < 1/k chances of selecting the real password.

For this reason, and because storage capacity is cheap, an operator

might use more than 20 sweetwords per user, as suggested by Juels

and Rivest [22], in order to further limit adversaries’ attack success

rates on distinguishing the real password from thek−1 honeywords.
However, in such case, where k > 20, a HGT may produce

unrealistic looking honeywords that can be easily excluded from

the list of possible real passwords. Thinking one step further, they

may even leak significant information regarding the way that a

HGT produces honeywords. This fact holds especially for HGTs

that are solely based on random replacement of characters, which

are either based on heuristics or not. Thus, a potential adversary

may utilise sophisticated techniques to reduce the pool of possible

real passwords by excluding a large amount of sweetwords that are

marked as honeywords by the deployed distinguishing technique.

We, for the first time, revisit the suggestion of k = 20 that Juels and

Rivest made in [22], and offer a HGT that produces honeywords

that meet the expected security requirements even when using

more than k sweetwords per user.

Table 6 shows the standard deviation (σ ) of ϵ-flatness and success-
number from their optimal values, for each number of sweetwords

per user (k). As shown, our chaffing-with-a-hybrid-model HGT ap-

proximates the optimal values having only a minor deviation. This

means that HoneyGen produces high-quality honeywords even

when using k > 20 sweetwords per user. As a result, the different

authentication systems’ operators are encouraged to deploy Honey-

Gen for producing more than 20 − 1 = 19 honeywords per user to

further limit the adversaries’ chances of selecting the real password

from the list of sweetwords. Figures 8 and 9 (Appendix B) show the

flatness and success-number graphs using different k values. As

shown, our chaffing-with-a-hybrid-model HGT approximates the

random guessing baseline (optimal solution) in all cases, thus, vali-

dating our conclusion that HoneyGen produces realistic-looking

honeywords even for larger than 20 k values.

6 FUTURE DIRECTIONS
Despite the empirical evaluation metrics proposed in [22] and

[32], namely ϵ-flat and flatness/success-number graphs, a theoreti-

cal/formal evaluation is largely absent from the related literature.

Such a theoretical evaluation method will enable the accurate secu-

rity assessment of HGTs as well as the direct comparison between

them. In addition, developing empirical standards for HGTs will

dramatically boost the interest of the scientific community on in-

venting HGTs that effectively meet these security requirements.

Furthermore, we plan to conduct a user study with a larger pool of

participants (more than 100) in order to reduce the uncertainty of

our results. Moreover, an interesting future direction is to examine

whether or not attackers can identify the passwords database based

on the generated honeywords. In such case, a portion of the pass-

words included in the password corpus may be low hanging fruits,

i.e., vulnerable to distinguishing attacks, so a potential adversary

may choose to attack them first.

For conducting the normalized Top-PW attack we have calcu-

lated the probability of each password in the password file F , based
on the probability distribution from a leaked password dataset D.
We calculate the probability of each password by counting the num-

ber of its occurrences and dividing by the total number of records.

However, we should also consider the case where an adversary

calculates the probability of each password based on a probabilistic

password model such as Markov [26].

Wang et al. [32] explored a series of targeted-guessing attackers

who can exploit the victims’ PII. These adversaries achieve better

attack success rates compared to non-targeted, i.e., PII unaware,

ones. In our case, we do not consider such adversaries as all of

our datasets are comprised of passwords only and not any other

relevant to the user PII. However, HoneyGen’s performance, in

terms of generating indistinguishable to the real passwords honey-

words, should be also evaluated under such attacking strategies that

may exploit similar information. We leave this as a future research

direction.

HoneyGen’s chaffing-with-a-password-model technique can be

utilised for password recovery. This is because it returns the k − 1
nearest neighbours of a given password according to their cosine

similarity. In other words, it returns thek−1most similar passwords

that exist in the password corpus. Thus, an authentication system

may offer a “forgot your password?” option requiring users to enter

the last password they remember. After that, the chaffing-with-

a-password-model HGT will retrieve and show its k − 1 nearest

neighbours. Note that in order to avoid any security implications,

the returned passwords should be partly obfuscated with ∗ so that

potential attackers cannot utilise this feature for password recovery.

Nonetheless, further experimentation is required for accurately

concluding about any security implications that this application

may have and we leave this as future research direction.

7 RELATEDWORK
Bojinov et al. [4] were the first to discuss the use of honeywords

to protect a user’s list of passwords in a client-side password man-

ager in case the device hosting that list is compromised. They do

this by generating several false password lists which look simi-

lar, i.e., the contain honeywords, to the real password file F . The
authors present, a syntax-based HGT in which honeywords are

generated using the same syntax as the real password. In particular,

each password is parsed into a series of tokens containing consec-

utive characters of letters, digits or special characters (symbols).
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Then, each character in the tokens is replaced with a randomly se-

lected one that matches the token’s type. For example, the password

blue3ball is modelled asw4 |d1 |w4. A potential honeyword would

bew4 → red , d1 → 3, andw4 → sword . However, Bojinov et al.’s
approach requires significant changes to the client-side authenti-

cation system, which largely affects usability [4]. Furthermore, it

cannot generate honeywords of different length or structure which

dramatically reduces the honeywords generation spectrum. In con-

trast, our approach requires minimal changes to the server-side

authentication system, while also being capable of generating hon-

eywords with different length and/or structure. While it is trivial

to generate honeywords for users that make use of password man-

agers, it is realistic to assume that the largest portion of users avoid

using such systems.

Kontaxis et al. [24] proposed SAuth, a protocol which employs

authentication synergy among different services. In this context, the

authors suggest the use of decoy passwords to tackle the problem of

password reusewhich can cause their system to fail if a user recycles

the same password across all vouching services [24]. However, the

key difference between the decoy passwords and honeywords (as

suggested in [4, 22]), is that any of those decoys can successfully

authenticate the user to the service, whereas the use of a honeyword

sets off an alarm as an adversarial attack has been reliably detected.

However, even in that case, HoneyGen can be applied for generating

decoy passwords which are similar to the user’s selected password.

Juels and Rivest [22] suggested the use of honeywords for reli-

ably detecting the disclosure of a password file F on the server-side.

At the expense of increasing the storage requirement by 20 times (as

they suggest to use 20 sweetwords per user), the authors introduce a

simple yet effective solution to sense impersonation. Their approach

is more practical compared to [4] as it requires minimal changes to

the existing server-side authentication systems and no changes to

the client-side system. The authors proposed four legacy UI HGTs

and one modified UI HGT. The legacy UI methods are preferred over

the modified UI methods due to usability advantages [32]. Thus,

we also focus on HGTs for the legacy UI. The four legacy UI HGTs

that Juels and Rivest proposed in [22], namely tweaking-by-tail,

modelling-syntax, hybrid and simple model, are heavily based on

random replacement of characters, thus, inherently unable to gen-

eralize to dramatically different password distributions. In contrast,

our ML-based HGT leverages representation learning techniques

to learn any system-specific underlying password distribution for

generating realistic looking honeywords.

Erguler suggested an alternative approach that selects the hon-

eywords from existing user passwords in order to provide high-

quality and realistic looking honeywords [14]. However, their HGT

is heuristic-based and lacks of systemic evaluation using the rele-

vant evaluation metrics (see [22] and [32]). Furthermore, as outlined

in [32], Erguler, I.’s approach has several limitations some of them

being the following: (a) it suffers from the “peeling-onions style”

distinguishing attack, (b) has critical deployment issues, and (c) dra-

matically decreases the potential honeywords generation spectrum

as it only returns honeywords that already exist in the password cor-

pus as real passwords. Our HGT deals with all the aforementioned

problems by combining the benefits of our chaffing-by-tweaking

and chaffing-with-a-password-model methods.

Chakraborty and Mondal [8] proposed a modified-UI based HGT,

namely Paired Distance Protocol (PDP), that requires a user to re-

member an extra piece of information, apart from the username

and password, for successfully login into a website, namely the

password-tail. The password-tail is selected from a list of randomly

chosen password-tails created by the system. However, this HGT

dramatically decreases the already low user experience of exist-

ing password-based authentication systems by forcing users’ to

remember extra bits of information. In our case, we do not require

any modification to the client-side authentication systems, thus,

preserving the current usability.

Recently, Fauzi et al. [15] proposed a two-stages PassGAN-based

HGT. PassGAN was originally developed for password guessing

[20]. PassGAN, being a probabilistic ANN-based model, it automati-

cally approximates the training data password distribution without

requiring any heuristic-based password rules. Thus, in [15], Fauzi et

al. demonstrated a potential way of adapting a password guessing

model, inspired from the common belief in [22] that such models

could be potentially produce high-quality honeywords. However,

Fauzi et al.’s approach has significant overhead as it generates sev-

eral lists of possible honeywords for each user account and finally

picks the ones that share high proximities to the real passwords (by

issuing a discriminator network). Furthermore, it requires that a

leaked password dataset is used for training their HGT; potential

adversaries that have access to the utilised leaked passwords dataset

can dramatically improve their guessing performance. In contrast,

our HGT directly generates the k − 1 honeywords for each user

account. In addition, we suggest the websites’ operators to train

our HGT on their password corpus to generate system-specific hon-

eywords and avoid any security implications. Finally, Fauzi et al.’s

approach should be also evaluated using the normalized Top-PW

attacker (as done in this paper) in order to conclude about whether

or not their HGT produces vulnerable honeywords for specific user

accounts that could be easily distinguished [15].

Wang et al. [32] observed that the relevant literature on hon-

eywords generation merely provide heuristic security arguments

when evaluating a HGT without any empirical (or theoretical) eval-

uation using datasets containing real passwords. Thus, they pro-

posed two evaluation metrics, namely flatness and success-number

graphs, for estimating the actual performance of any proposed HGT.

Using those metrics, Wang et al. showed that the four legacy UI

HGTs proposed in [22] can survive neither PII-unaware nor PII-

aware (targeted) attackers. Furthermore, the authors demonstrated

that probabilistic password guessing models cannot be readily em-

ployed to generate high-quality honeywords, rather than serving

as a mean to evaluate the resistance to password distinguishing

attacks of other HGTs.

8 CONCLUSION
We propose HoneyGen, a resistant to distinguishing attackers HGT

that produces high-quality honeywords according to each authenti-

cation system’s password distribution. HoneyGen can be applied to

any existing password-based authentication system with minimal

effort. We evaluate HoneyGen’s performance using the state-of-the-

art evaluation metrics as well as by conducting a user study with

Session 3B: ML and Security (II)  ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

276



human participants. Our results suggest that HoneyGen is highly

effective on timely detecting the leakage of password file F .
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A CHAFFING-BY-TWEAKING PSEUDOCODE
In this part, we provide supplementary material for the chaffing-by-
tweaking HGT. In particular, Algorithm 1 shows the pseudocode

for the detailed operation of this HGT (see Section 3 for a detailed

description). Later, Appendix B shows the flatness and success-

number graphs for different numbers of sweetwords per user, i.e.,

k (see Section 5 for more details).
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Algorithm 1 Honeywords Chaffing Pseudocode

1: procedure Chaffing_by_tweaking(r eal_password , k , f , p, q)
2: honeywords = [] ▷ Initialize the honeywords list.

3: while Size(honeywords) < k do ▷ Repeat until k honeywords are produced.

4: temp = ”” ▷ Initialize honeyword.

5: for i ← 0; i < Size(r eal_password ) do ▷ Loop on each character of the real password.

6: if r eal_password [i].is_lowercase() then ▷ Check if character is a lower-case letter.

7: temp+ = r eal_password [i].uppercase(f ) ▷ Upper-case the character with a probability f .
8: else if r eal_password [i].is_uppercase() then ▷ Check if character is an upper-case letter.

9: temp+ = r eal_password [i].lowercase(p) ▷ Lower-case the character with a probability p .
10: else if r eal_password [i].is_diдit () then ▷ Check if character is digit.

11: temp+ = r eal_password [i].chanдe_diдit (q) ▷ Replace the digit with a different one with probability q.
12: else ▷ The character is a symbol.

13: temp+ = r eal_password [i].chanдe_symbols(p) ▷ Replace each occurrence of the symbol with a different one.

14: end if
15: end for
16: end while
17: if honeywords .contains(temp) then ▷ Check if honeyword already exists in the list of honeywords.

18: duplicates = duplicates + 1 ▷ Increase duplicates counter.

19: if duplicates mod 4 = 0 then ▷ Duplicates limit reached so increase the probabilities.

20: p+ = 0.1

21: q+ = 0.1

22: f + = 0.1

23: end if
24: else ▷ New honeyword produced.

25: honeywords .append (temp) ▷ Include honeyword in the honeywords list.

26: end if
27: return honeywords ▷ Return the honeywords list.

28: end procedure
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Figure 8: The flatness graphs for each number of sweetwords per user (k) using RockYou as the target dataset and Phpbb as the
attacker dataset D.
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Figure 9: The success-number graphs for each number of sweetwords per user (k) usingRockYou as the target dataset and Phpbb
as the attacker dataset D.
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