
Exploiting Split Browsers for Efficiently
Protecting User Data

Angeliki Zavou, Elias Athanasopoulos, Georgios Portokalidis,
and Angelos D. Keromytis

Columbia University, New York, NY, USA
{azavou,elathan,porto,angelos}@cs.columbia.edu

ABSTRACT

Offloading complex tasks to a resource-abundant environ-
ment like the cloud, can extend the capabilities of resource
constrained mobile devices, extend battery life, and improve
user experience. Split browsing is a new paradigm that
adopts this strategy to improve web browsing on devices like
smartphones and tablets. Split browsers offload computa-
tion to the cloud by design; they are composed by two parts,
one running on the thin client and one in the cloud. Render-
ing takes place primarily in the latter, while a bitmap or a
simplified web page is communicated to the client. Despite
its difference with traditional web browsing, split browsing
still suffers from the same types of threats, such as cross-site
scripting. In this paper, we propose exploiting the design of
split browsers to also utilize cloud resources for protecting
against various threats efficiently. We begin by systemati-
cally studying split browsing architectures, and then proceed
to propose two solutions, in parallel and inline cloning, that
exploit the inherent features of this new browsing paradigm
to accurately and efficiently protect user data against com-
mon web exploits. Our preliminary results suggest that our
framework can be efficiently applied to Amazon’s Silk, the
most widely deployed at the time of writing, split browser.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Client/Server;
D.4.6 [Security and Protection]: Information flow con-
trols

Keywords

Split browser architectures, information flow tracking, data
protection, cloud, cross-site scripting

1. INTRODUCTION
The proliferation of smartphone devices and ubiquitous

Internet connectivity over wireless protocols (WiFi, 3G, 4G,
etc.) has multiplied the number of Internet users [3], as well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1665-1/12/10 ...$15.00.

as the services offered to them. Web browsers have become
the preferred “portal” to access these services, since they
allow developers to create a uniform interface that is acces-
sible from different platforms (PCs, smartphones, tablets,
etc.), and requires minimal (if any) changes to support new
platforms. For the same reason, many mobile applications
(e.g., the NY Times and Facebook apps) simply encapsulate
browsers, acting in essence, as site-specific browsers [24].

Their key role and popularity, their size, and in the case
of mobile devices, a growing monoculture,1 are probably the
main reasons browsers are frequently targeted by attack-
ers [5,11,17]. In the past, they have suffered severe attacks
that exploit vulnerabilities like buffer overflows [17], which
enable remote parties to fully control the browser or even the
entire operating system after compromise. More frequently
though, they enable cross-site scripting (XSS) attacks [26],
that are in-fact exploiting vulnerabilities in web applications
and not the browser itself. Altogether, the goal of attackers
is predominantly obtaining sensitive user information (e.g.,
credit cards, SSNs, and passwords) that can be used to make
profit. Thus, browser security plays a crucial role in the pro-
tection of user data.

Concurrently, an increasing number of services migrate to
the cloud to reduce costs and gain increased availability and
reliability. The ample processing power available in existing
cloud infrastructures is also utilized to improve the perfor-
mance of computationally intensive tasks, or offload certain
tasks (even security) entirely to the cloud [9, 22]. The lat-
ter is particularly interesting, since it allows us to overcome
certain fundamental constraints of mobile devices, such as
battery life and limited processing power.

Rendering a web page can be considered as such an in-
tensive task. Split (or else cloud-based) browser architec-
tures [2, 16] split the load of page rendering in two parts,
and offload one part to the cloud. Briefly, they consist of
two components: the client and the server (cloud) part. To
access a web site or application, the client part first commu-
nicates with the cloud side, which is responsible for making
all required connections and fetching the content required to
assemble the final page. Second, the collected components
are “rendered” and delivered to the client. Rendering in this
context can mean producing a bitmap of the web site, or
performing a series of optimizations on the content (e.g.,
downsizing images) and sending a compressed HTML page
with all third-party elements embedded in-line.

The gains from using split browsers in mobile devices are

1Webkit powers the browsers on Android, iPhone, and
Blackberry smartphones.

straightforward. Bandwidth can be saved, and precious pro-
cessing cycles and energy need not be wasted, as a significant
part of the computation is moved off the device. Moreover,
since the cloud side of the browser acts as a proxy, content
caching is made easy. Although the idea is not new, split
browsers are on the rise. Amazon, one of the largest IT ven-
dors globally, promotes this particular architecture through
its Amazon Silk web browser that comes with their Kindle-
Fire [4] device.

The split browser paradigm presents us with new oppor-
tunities in improving security and protecting user data, as
users interact with services hosted in the cloud. In this short
paper, we propose a cloud-wide data tracking architecture,
which will be transparently offered to all entities running in
the cloud. Our goal is to enable various defensive measures
that can be deployed on-demand. For example, intra-host
data flow tracking can be used to protect the cloud-side of
the browser (i.e., the back-end) from memory corruption
vulnerabilities [21], while cloud-wide information tracking
can be used to detect and prevent information leaks [31], or
just provide data accounting services, when interacting with
services and applications within the cloud. The latter actu-
ally becomes increasingly desirable in split browser architec-
tures, as more information and functionality is transferred
to the cloud.

However, simply introducing data tracking support for ev-
erything already hosted on the cloud is not sufficient to pro-
tect from other types of attacks, like XSS. To extend the
abilities of our approach, we propose replicating the client-
side of the browser (i.e., the front end) in the cloud. This
“cloning”enables us to extend data tracking to the front end,
and apply protection mechanisms like XSS prevention [20].

We envision that the underlying data tracking framework
can be deployed in various levels using different techniques.
For example, by employing virtualization [13,15], or extend-
ing languages [30] and the OS [32].

In summary, this paper contributes the following:

• We explore the split browser architecture for web brows-
ing. We investigate security and privacy issues, as
well as new features, which are inherited from switch-
ing from traditional web browsing to the split browser
model.

• We propose a data-tracking framework, specifically de-
signed for split browsers like Amazon’s Silk, for coun-
tering web exploitation in this new browsing paradigm.

This paper is organized as follows. In Section 2, we present
the split browsing paradigm as it has evolved during the last
two decades. In Section 3, we propose a security architecture
for cloud-based browsers, building on the design of Amazon’s
Silk. We review related work in Section 4, and conclude in
Section 5.

2. SPLIT BROWSERS
Split browsers are web browsers that can offload client-side

execution by performing a partial pre-rendering at the server
side. The concept was first introduced in 1999 by iCentrix
Ltd for the design and implementation of MarioNet [2], a
web browser developed for operating in thin clients with
low memory and processor capabilities. The core idea be-
hind MarioNet was to perform all rendering at the server
and maintain a minimal engine that can uncompress and
display graphics at the client. As such, all communications

Amazon EC2

Figure 1: Split browser architecture overview. No-
tice that all rendering, as well as fetching external
resources, for example ads from www.doubleclick.net,
is performed at the cloud. The device finally re-
ceives a compressed HTML document with all ex-
ternal resources embedded in-line, which has been
composed at Amazon’s servers.

for browsing a web page were performed in a single round
trip, using a proprietary protocol called OPTIC, which could
deliver a pre-rendered bitmap image. Subsequently, all UI
events, such as mouse clicks and keyboard input, would be
relayed to the server; this is why there is a loose connection
in spelling MarioNet and marionette.

The design of MarioNet was not followed by immediate
success. It took more than six years for another vendor to
follow the paradigm of MarioNet. Opera, one of the largest
browser vendors, published Opera Mini in 2005. The tar-
get of Opera Mini is mobile devices and smartphones with
constrained capabilities, such as tiny screens (even less than
128 pixels wide). The browser by default operates in Small-
Screen Rendering (SSR) mode. That means, that all ren-
dering is performed at servers owned by Opera and a final
bitmap is delivered to the client-side part of Opera mini.
JavaScript support is limited. The server runs all scripts
for a couple of seconds, and then, initiates rendering. This
means that all scripts that exceed a time threshold are not
going to be operational in the final web page. Asynchronous
calls, such as onSubmit and OnClick for example, are also
relayed to the Opera server for execution, and the result
web page is transmitted back to the client. This essentially
resembles the operation of MarioNet.

Apart from MarioNet and Opera Mini, the most recently
announced browser that supports this split architecture was
developed by Amazon for the KindleFire platform. Silk has
been the largest success story of this browser paradigm. Be-
low, we discuss its architecture in more detail.

2.1 Amazon Silk
Silk is a browser designed by Amazon for use with the

KindleFire tablet. This split browser utilizes Amazon’s Elas-
tic Cloud computing base [28], also known as EC2, for per-
forming part of the rendering in the cloud. Amazon calls
this process web acceleration. Silk has many components
that can be accelerated, like networking, HTML rendering,
external scripts, and so forth. The set of components that
will be eventually accelerated is dynamically determined at

run time. An example operation of Silk is the following. If
the browser is in acceleration mode, instead of sending an
initial HTTP request toward the target web server, it sends
it to Amazon’s infrastructure and the back end part of Silk
in particular. Amazon then performs the HTTP request on
behalf of the user. The initial HTTP request frequently trig-
gers subsequent HTTP requests, for fetching images, scripts,
and advertisements. All requests, including the ones that
target third-party servers, are performed by the cloud, and
the corresponding responses are collected. Finally, a web
page containing all external resources embedded in-line is
assembled, compressed, and returned to the user.

The rendering part is loosely based on WebKit [27], while
Google’s SPDY protocol [1] is employed between client and
back end for speeding up network operations. Although,
it has been estimated that some pages load slower with Silk
than with a traditional browsing [16], the savings in terms of
battery consumption for the clients can be significant. Band-
width savings are also important in the case of bandwidth
oriented data plans because the final page being transmitted
is optimized for the client device (e.g., images are downsized
to fit its screen), compressed, and the whole communication
involves just a single party (i.e., the Amazon server) and
requires only one round-trip. Although, at the time of writ-
ing, KindleFire does not support 3G, it is very likely that in
the future we will see more mobile devices featuring Silk or
Silk-like browsers. Finally, in certain cases, caching all fre-
quently accessed information in the cloud can reduce latency
even further.

Figure 1 depicts a split browser architecture, and an exam-
ple of operation of Silk while browsing www.sega.com. No-
tice that all rendering, as well as fetching external resources,
for example advertisements from www.doubleclick.net, is
performed at the cloud. The device finally receives a com-
pressed HTML document with all external resources embed-
ded in-line, which has been composed at Amazon’s servers.

Many privacy concerns have been raised because all com-
munication is carried out by Amazon on behalf of the user.
The Electronic Frontier Foundation (EFF) has discussed all
these issues with Amazon [6]. The company has publicly re-
sponded that web acceleration is an opt-in feature and that
encrypted traffic (i.e., HTTPS), which is usually associated
with more sensitive resources, is never routed through the
cloud. In this paper, we do not address such privacy con-
cerns, but we mainly focus in investigating efficient security
mechanisms for architectures like Silk. However, the ap-
proach presented here, and assuming that the provider (e.g.,
Amazon) behaves honorably, can be also used to protect users
when encryption is employed.

We believe that split browser architectures will receive
major attention and adoption in the following years, mainly
for two reasons. First, cloud computing has became main-
stream with large infrastructures offering great computa-
tional capabilities. Second, even though thin clients evolve
in computational capabilities, some fundamental constraints,
like battery consumption, remain. Cloud-based browsers
can reduce processing on devices, which translates to in-
creased battery life. Moreover, the fact that rendering takes
place in the cloud gives us the opportunity to take advan-
tage of the intrinsic characteristics of the cloud architecture
to efficiently apply protection mechanisms.

2.2 Site-specific Split Browsers
Nowadays, we are experiencing the trend of custom single-

site applications, which encapsulate browser features for ac-
cessing popular services otherwise available over the web.
These custom and site-specific browsers are popular in mo-
bile platforms, such as Android and iOS. Examples of this
trend are Google services such as Google Search and Maps,
social services such as Facebook, Twitter, and Foursquare,
various popular applications that evolved in the mobile plat-
form such as Instagram, and popular web sites such as Tri-
pAdvisor, NYTimes, and so on. Technically, these appli-
cations embed a browser component, usually based on the
WebKit engine, for rendering web content. However, they
extend the functionality of the browser in numerous ways to
provide a more desktop-like user interface. Since large com-
panies invest in the development of these custom browsers,
we expect that in the near future they will be enhanced
further. Notice, that many of these companies earn more
revenue from mobile than desktop users, and they already
operate in the cloud. For example, Facebook is considered
as the biggest host of photographic content. We consider it
to be highly likely that split browser architectures will be
adopted by many other IT vendors, apart from Amazon.

3. APPROACH
Split browsing is not exempt from common security risks

suffered by the traditional web browsing model, e.g., XSS
attacks and code injection flaws. Solutions for all these web
exploits have been explored, and some of them are already
integrated in traditional web applications. Currently, most
of these approaches attempt to prevent web exploits on the
server side [29], by inspecting and employing sanitization
checks on the data exchanged between the web server and
the browser. However, server side mitigation is not ade-
quate for efficient protection against all categories of web
exploitation, and therefore protection mechanisms need to
be also applied on the client-side (i.e., the web browser)
as well. Unfortunately, client-side security solutions tend
to be resource intensive, precluding the use of efficient but
heavyweight protection mechanisms for XSS and data leak
prevention, such as dynamic data flow tracking (DFT) tech-
niques [21, 29]. The problem is only exacerbated when cast
to the thin client model, where resources (e.g., battery and
memory) are limited.

In this paper, we uncover an opportunity for applying oth-
erwise costly protection mechanisms using cloud resources,
and propose a framework for protecting user data when using
this new browsing paradigm. The advantage of split-browser
architectures, over traditional ones, lies in the existence of
a pre-rendering phase, which takes place in the cloud. We
can exploit this phase to apply particular security mecha-
nisms [30,31] in a more efficient way than in the traditional
browsing model. More specifically, we propose a mechanism
that capitalizes on the architectural model of split browsers,
as well as DFT, in order to protect user data from common
web exploitation techniques.

3.1 Architecture Overview
The design of our architecture for protecting split browsers

was driven mainly by two requirements: first the accurate
detection and prevention of a multitude of attacks, and sec-
ond performance. To achieve the first, we turn to a well es-
tablished technique that has been used by many protection

www.sega.com
www.double click.net

Figure 2: Architecture overview. The two possible designs, in-parallel and inline, of the clone of the client-
side (front end) split browser part. In the in-parallel replication, the pre-rendered responses are forwarded
from the browser back end in parallel to both the client-side front end and to its clone residing on the cloud,
that process them independently. In the inline design, all responses pass through the clone before reaching
the client-based front end, which happens only in the absence of exploits.

solutions. Data flow tracking (DFT) has powered many se-
curity mechanisms in the past, and can offer protection from
the most common web exploits (i.e., SQL injection, code in-
jection and XSS exploitation) with high accuracy. For the
second, we propose exploiting two facts: (a) most of the
processing in split-browser architectures occurs in the cloud,
and (b) the cloud has ample computing resources available,
to apply DFT-based defenses with low-overhead.

A high level overview of the proposed architecture is il-
lustrated in Figure 2. We envision that all communicating
services residing on the cloud (i.e., the cloud-based compo-
nent of the split browser, and the web and servers, etc.) will
incorporate taint tracking mechanisms [10, 30, 31] in their
software stack, if such mechanisms are not already a secu-
rity service offered by default by the cloud provider. At a
high level, our security model performs an in-depth and pre-
cise analysis of how unsafe user inputs, that are usually the
main source of most web exploits, propagate inside the split
browser component residing on the cloud. Inputs originat-
ing from services residing outside the cloud can be considered
tainted in their entirety, if desired. A fact that we believe will
encourage the migration of additional services to the cloud.

3.2 Front-end Cloning
Although some common web exploits can be detected and

prevented by the enhanced cloud-based component of split
browsers, unfortunately the client-side part of the browser
still remains vulnerable to certain web exploits that could be
detected only on the client-side. In order to protect from this
subset of exploits, and taking into consideration the limited
resources on the client side in terms of computation and
energy reserves, we propose running a synchronized clone of
the client-side component of the split browser in the cloud.

The idea of replicating the image of a thin client in the
cloud, as well as relevant synchronization issues, has been
discussed broadly in previous works that explored ways to
extend the capabilities of smartphones by offloading execu-
tion to the cloud [9, 22], and thus we omit technical details
for brevity. At a high level, an execution trace with all nec-
essary information for the accurate replay of user actions is
recorded on the client and then transmitted for replaying
on the enhanced clone running on an emulator in the cloud.

As the cloud does not have the resource constraints (i.e.,
primarily battery constraints) of the client, we can perform
security checks that would otherwise be too expensive to run
on the client itself.

We envision data tracking techniques being only one of the
defenses enabled by our clone architecture for discovering
intrusions that could otherwise only be detected at the web
browser. Briefly, our approach will flag data from user input
as tainted and will track this data throughout the execution
of the system, so that all data depending on them will also be
flagged and tracked. More precisely, our design suggests that
the client’s clone runs over a cloud where all communicating
services are DFT-enabled and exchange marked data.

Although defense mechanisms for web browsers using data
tracking techniques in the cloud have been proposed in pre-
vious works, they have failed to prove that they are practical
enough for deployment on production systems. The major
strengths of our approach over previous protection mecha-
nisms are summarized in the following:

1. The client is not burdened with heavyweight DFT, it
is the resource-rich, cloud-based clone that will carry
this burden.

2. Traffic to the client is not stressed with extra bytes for
carrying the taint labels, since these only need to be
transferred to the clone in the cloud.

3. Finally, in our approach DFT is computationally af-
fordable, since it is only applied on components run-
ning on the cloud, and therefore can be significantly
accelerated by the cloud infrastructure.

We plan to explore two different designs of the cloud-based
synchronized clone, in parallel and inline in respect to the
main execution path. We will evaluate the two models in
terms of response latency, application functionality, and re-
source usage.

In parallel clone. In this design, the clone will be run-
ning in parallel with the original split browser part resid-
ing on the client machine. The clone receives all the traffic
that the original component receives and serves mostly as
a complementary debugging tool without interfering in the
communications between the original two parts of the split
browser. The clone is instrumented with taint tracking tech-

niques and in case of a security violation detection, i.e., data
leak, memory corruption etc., an alarm is raised to inform
the original components of the browser of the event. A noti-
fication system receives the alarm and decides on further ac-
tions, i.e., logging, notifying the client-side of the violation,
preventing the data transfer, or terminating the connection
with an error. We omit further details on the notification
system and the possible actions in case of a violation detec-
tion due to space constraints.

Inline clone. Unlike the previous approach, this design
is based on placing the clone interspersed between the two
components of the split browser. Responses from the cloud-
based component are directed through the cloud-based clone
before reaching the client. If no violation is detected, results
are forwarded to the client as is. As expected, this model
evaluates the HTTP responses in advance, and therefore
protects against potential exploits in real-time. Unfortu-
nately, it introduces further latency in the communication
between the split browser and the cloud, especially if the
content is highly dynamic and cannot be cached. It is un-
clear, if this added latency will significantly affect end-user
experience. We plan to perform cost analysis to evaluate and
quantify the scale of the latency using real-world payloads,
and taking into account standard acceleration techniques,
such as caching.

To our knowledge, our approach is the first one to take
advantage of split browser architectures for protecting user
data from common types of attacks launched against web
applications. We also believe that it will find a lot of sup-
porters in the future, since it does not only offer a practical
solution, but it is also consistent with the current trend of
moving execution loads, including security-related functions,
to the cloud.

4. RELATED WORK
Decoupling resource-intensive execution, such as heavy-

weight security mechanisms, from resource-constrained thin
clients and offloading their execution on the cloud has been
explored in the past in different contexts, especially in the
field of resource-poor smartphones [8,9,22]. The main goal of
CloneCloud [9] is the acceleration of CPU intensive and low
interaction applications, nonetheless its authors recognize
the potential use of the approach in offloading heavyweight
security mechanisms from phones. On the other hand, in
Paranoid Android [22] the authors propose a framework for
collecting the state of a smartphone, which is periodically
sent to the cloud, where various security checks are applied.

Research literature is rich in papers employing taint-tracking
mechanisms for detecting and defending against web ex-
ploits [7, 10, 21, 23, 29, 33]. All these frameworks employ
DFT mechanisms on the server side of web applications,
and their scope of protection ranges from classical buffer
overflow and format-string vulnerabilities to the detection
of XSS and other types of injection attacks. Some of them
are problem-specific and require modifications for protecting
web applications against a wider set of web exploits. For in-
stance, DBTaint [10] applies information flow tracking on
databases.

Lately, server-side defense mechanisms are shifted to the
cloud. To date, most research on the problem of data leak-
age through cloud-based web services reflects continuations
of established lines of security research, such as web secu-
rity, and data outsourcing and assurance, rather than ex-

clusively focusing on cloud security with a few exceptions.
Mundada et al. present Silverline [18], a system that al-
lows cloud providers to offer data and network isolation for
cloud-based services with the goal of auditing and preventing
data leaks resulting from misconfigurations and side-channel
attacks from co-resident cloud tenants. While the authors
recognize the efficiency of existing information flow control
techniques on the cloud in tracking user data and preventing
data leakages, they seem to focus on server- side protection
mechanisms without investigating data leakages through the
web browser.

Finally, there are many proposals for defending against
XSS exploitation in the traditional client/server web model.
There are hybrid frameworks that require modifications to
both server and client [12, 14, 19], server-side only [25], and
client-side only [20] approaches. Although these frameworks
have been designed towards the right direction they expe-
rience various limitations. One fundamental problem they
have to deal with is that web applications are separated in
a server-side part, which is organized and delivered by a
web server, and a client-side part, which is executed in the
browser. The lack of semantics between policies expressed at
the server and policies executed in the client, and the variety
of different browser brands, limit these solutions. Overcom-
ing these issues in the split browser model is however possible
because the pre-rendering process occurs in the cloud.

5. CONCLUSION
In this paper, we explored a new browsing paradigm,

namely split browsing. This model has been gradually be-
coming more popular, mainly due to the fact that Amazon
ships KindleFire, a tablet purchased by millions of users,
with its own custom split browser, Silk. We discussed how
this kind of browsers operate and highlighted their major
differences with traditional web browsers. We further took
advantage of this new browsing paradigm for offering pro-
tection against web exploitation. Our two architecture pro-
posals, in parallel and inline cloning, utilize the inherent
features of split browsing to offer more accurate, and with
less overhead, protection based on dynamic data tracking.
We envision this paper to be the beginning of an ongoing
research effort for new browser paradigms that will revise
the traditional security technologies as a transition from the
traditional client/server web browsing model to the cloud-
based browsing trend is expected to happen.

Acknowledgments

This work was supported by DARPA through Contract FA8650-
11-C-7190. Any opinions, findings, conclusions or recom-
mendations expressed herein are those of the authors, and
do not necessarily reflect those of the US Government or
DARPA. It was also supported in part by the FP7-PEOPLE-
2010-IOF project XHUNTER, No. 273765.

6. REFERENCES

[1] SPDY: An experimental protocol for a faster web. The
Chromium Projects. http://www.chromium.org/
spdy/spdy-whitepaper/.

[2] Internet Appliance - new cheap Internet access for
schools from Icentrix. trainingzone, April 1999.
http://www.trainingzone.co.uk/item/3756.

http://www.chromium.org/spdy/spdy-whitepaper/
http://www.chromium.org/spdy/spdy-whitepaper/
http://www.trainingzone.co.uk/item/3756

[3] IDC: More Mobile Internet Users Than Wireline Users
in the U.S. by 2015, September 2011. http://www.
idc.com/getdoc.jsp?containerId=prUS23028711.

[4] iSuppli Report: Kindle Fire Takes Off, Apple Loses
Grip. ANDROID AUTHORITY, February 2012.
http://www.androidauthority.com/isuppli-

kindle-fire-gaining-on-ipad-54230/.

[5] D. Alperovitch and G. Kurtz. Hacking Exposed:
Mobile RAT Edition. In RSA, Febrary 2012.

[6] D. Auerbach. EFF Gets Straight Privacy Answers
From Amazon About New ”Silk” Tablet Browser.
https://www.eff.org/2011/october/amazon-fire

%E2%80%99s-new-browser-puts-spotlight-privacy-

trade-offs, October 2011.

[7] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD:
Precise dynamic prevention of cross-site scripting
attacks. In Proc. of the 5th DIMVA, pages 23–43, July
2008.

[8] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina. Controlling data in the
cloud: outsourcing computation without outsourcing
control. In Proc. of the 2009 CCSW, pages 85–90,
November 2009.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti. CloneCloud: elastic execution between
mobile device and cloud. In Proc. of EuroSys’11, pages
301–314, April 2011.

[10] B. Davis and H. Chen. DBTaint: cross-application
information flow tracking via databases. In Proc. of
WebApps’10, June 2010.

[11] D. Goodin. At hacking contest, Google Chrome falls
to third zero-day attack. Arstechnica, March 2012.
http://arstechnica.com/business/2012/03/

googles-chrome-browser-on-friday/.

[12] M. V. Gundy and H. Chen. Noncespaces: Using
randomization to enforce information flow tracking
and thwart cross-site scripting attacks. In Proc. of the
16th NDSS, February 2009.

[13] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. In Proc. of EuroSys’06, pages
29–41, Arpil 2006.

[14] T. Jim, N. Swamy, and M. Hicks. Defeating script
injection attacks with browser-enforced embedded
policies. In Proc. of the 16th WWW, pages 601–610,
May 2007.

[15] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: Practical dynamic data flow
tracking for commodity systems. In Proc. of the 8th

VEE, pages 121–132, March 2012.

[16] A. Ku. Amazon Silk: Assisted Web Browsing (Sort
Of). tom’s hardware http://www.tomshardware.com/

reviews/amazon-kindle-fire-review,3076-7.html,
November 2011.

[17] H. Moore. Cracking the iPhone (part 1). Metasploit,
October 2010. https://community.rapid7.com/
community/metasploit/blog/2007/10/11/cracking-

the-iphone-part-1.

[18] Y. Mundada, A. Ramachandran, and N. Feamster.
SilverLine: Data and network isolation for cloud
services. In Proc. of 3rd HotCloud, June 2011.

[19] Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A robust basis for cross-site
scripting defense. In Proc. of the 16th NDSS, February
2009.

[20] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-site scripting prevention with
dynamic data tainting and static analysis. In Proc. of
the 14th NDSS, February 2007.

[21] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In Proc.
of the 12th NDSS, February 2005.

[22] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: versatile protection for
smartphones. In Proc. of the 26th ACSAC, pages
347–356, December 2010.

[23] R. Sekar. An efficient black-box technique for
defeating web application attacks. In Proc. of the 16th

NDSS, February 2009.

[24] Site Specific Browser. Turn any web site into a
Windows Program or Mac App. http://
sitespecificbrowser.com/.

[25] M. Ter Louw and V. Venkatakrishnan. Blueprint:
Precise browser-neutral prevention of cross-site
scripting attacks. In Proc. of the 30th IEEE
Symposium on Security & Privacy, May 2009.

[26] theharmonyhuy. Recent Facebook XSS Attacks Show
Increasing Sophistication. Social Hacking, April 2011.
http://theharmonyguy.com/oldsite/2011/04/21/

recent-facebook-xss-attacks-show-increasing-

sophistication/.

[27] S. J. Vaughan-Nichols. The mobile web comes of age.
Computer, 41(11):15–17, November 2008.

[28] E. Walker. Benchmarking Amazon EC2 for
high-performance scientific computing. LOGIN,
33(5):18–23, October 2008.

[29] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: a practical approach to defeat a
wide range of attacks. In Proc. of the 15th USENIX
Security Symposium, July 2006.

[30] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow
assertions. In Proc. of the 22nd SOSP, pages 291–304,
October 2009.

[31] A. Zavou, G. Portokalidis, and A. D. Keromytis.
Taint-exchange: a generic system for cross-process and
cross-host taint tracking. In Proc. of the 6th IWSEC,
pages 113–128, November 2011.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proc. of 7th OSDI, November 2006.

[33] D. Zhu, J. Jung, D. Song, T. Kohno, and
D. Wetherall. TaintEraser: Protecting sensitive data
leaks using application-level taint tracking. ACM
Operating Systems Review, 45(1):142–154, 2011.

http://www.idc.com/getdoc.jsp?containerId=prUS23028711
http://www.idc.com/getdoc.jsp?containerId=prUS23028711
http://www.androidauthority.com/isuppli-kindle-fire-gaining-on-ipad-54230/
http://www.androidauthority.com/isuppli-kindle-fire-gaining-on-ipad-54230/
https://www.eff.org/2011/october/amazon-fire%E2%80%99s-new-browser-puts-spotlight-privacy-trade-offs
https://www.eff.org/2011/october/amazon-fire%E2%80%99s-new-browser-puts-spotlight-privacy-trade-offs
https://www.eff.org/2011/october/amazon-fire%E2%80%99s-new-browser-puts-spotlight-privacy-trade-offs
http://arstechnica.com/business/2012/03/googles-chrome-browser-on-friday/
http://arstechnica.com/business/2012/03/googles-chrome-browser-on-friday/
http://www.tomshardware.com/reviews/amazon-kindle-fire-review,3076-7.html
http://www.tomshardware.com/reviews/amazon-kindle-fire-review,3076-7.html
https://community.rapid7.com/community/metasploit/blog/2007/10/11/cracking-the-iphone-part-1
https://community.rapid7.com/community/metasploit/blog/2007/10/11/cracking-the-iphone-part-1
https://community.rapid7.com/community/metasploit/blog/2007/10/11/cracking-the-iphone-part-1
http://sitespecificbrowser.com/
http://sitespecificbrowser.com/
http://theharmonyguy.com/oldsite/2011/04/21/recent-facebook-xss-attacks-show-increasing-sophistication/
http://theharmonyguy.com/oldsite/2011/04/21/recent-facebook-xss-attacks-show-increasing-sophistication/
http://theharmonyguy.com/oldsite/2011/04/21/recent-facebook-xss-attacks-show-increasing-sophistication/

	Introduction
	Split Browsers
	Amazon Silk
	Site-specific Split Browsers

	Approach
	Architecture Overview
	Front-end Cloning

	Related Work
	Conclusion
	References

