
∅pass: Zero-storage Password Management Based on Password
Reminders

Giannis Tzagarakis
FORTH-ICS, Greece

gtzagarakis@gmail.com

Panagiotis Papadopoulos
FORTH-ICS, Greece
panpap@ics.forth.gr

Antonios A. Chariton
University of Crete, Greece

csd3235@csd.uoc.gr

Elias Athanasopoulos
University of Cyprus, Cyprus

athanasopoulos.elias@cs.ucy.ac.cy

Evangelos P. Markatos
FORTH-ICS, Greece
markatos@ics.forth.gr

ABSTRACT
A plethora of Internet services and applications require user au-
thentication. Although many alternatives have been proposed, and
despite the significant advancement in attackers’ capabilities to
perform password cracking, the most attractive authentication tech-
nology today, is still text-based passwords.

The last years, there is a rapid increase in the number of web
services a user accesses in their everyday life. Most of these services
(e.g., online shops, OSNs, chat clients, etc.) require their very own
password, thus increasing the burden of password management
on the user side. In this paper, we propose ∅pass, a novel system
that combines ideas from existing authentication methods, to offer
a user-friendly mechanism to securely maintain accounts. ∅pass
works as a password manager, but it requires zero storage for the
passwords: no password will ever get stored either in the user’s
device, or in a third-party database.

We implement ∅pass as an extension for the popular Google
Chrome browser, and we evaluate it by using the popular business-
oriented social networking service LinkedIn. Early results from our
performance tests show that ∅pass, using a proactive strategy, can
achieve more than 2 orders of magnitude better performance than
the current state-of-the-art authentication mechanism.

CCS CONCEPTS
• Security and privacy→ Authentication; Access control;

KEYWORDS
Password Management, Password Reminders, User Authentication

ACM Reference Format:
Giannis Tzagarakis, Panagiotis Papadopoulos, Antonios A. Chariton, Elias
Athanasopoulos, and Evangelos P. Markatos. 2018. ∅pass: Zero-storage
Password Management Based on Password Reminders. In EuroSec’18: 11th
European Workshop on Systems Security , April 23–26, 2018, Porto, Portugal.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3193111.3193113

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroSec’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5652-7/18/04.
https://doi.org/10.1145/3193111.3193113

1 INTRODUCTION
Text-based password authentication is based on the assumption
that the users know something secret (memometrics). This au-
thentication mechanism has been connected with many problems,
such as leakage [13], and phishing [8] attacks. To remedy some of
them, more sophisticated passwords are recommended. Yet, a UK
study [18] presents that 70% of the users cannot remember complex
or long passwords, and 44% of shoppers have abandoned at least
one online shopping transaction because they were frustrated with
the complexity of identity verification. 24% of these abandoned
transactions were not taken elsewhere, as users canceled their on-
line shopping attempt in general, resulting in 214 million pounds
worth of net lost revenue for retailers.Additionally, recent studies[20]
have shown that users, on average, spend 12 full days of their lives
searching for the correct username and password pair. If one tries
to extrapolate this to the global online population, this results in a
frustrating productivity sink of 16.3 billion hours a year in total.

Despite all of the above, still, text-based passwords remain the
dominant authentication technique for web services today. And
since they seem not to be replaced by anything, anytime soon,
many alternatives have been proposed for hardening password
authentication. One of these, Two-Factor Authentication (2FA),
requires users to supply an additional password, most likely a token,
for logging into the service. This token is received over a different,
out-of-band, communication channel, such as cellural network, and
then, users supply it alongwith their password over Internet. Recent
studies measure 2FA adoption in probably the largest provider of
this technology, Google, and found that less than 7% of its users
have enabled 2FA [16, 21]. Other alternatives include Single-Sign-
On (SSO) services, and password managers, which will be further
discussed in Section 3.

In this paper, we combine some of the most important properties
of the above alternatives, and deliver ∅pass, a novel system for
providing password-based authentication. The proposed system
significantly raises the bar for the attackers, without degrading
the users’ experience. Using ∅pass, passwords are stored neither
at user’s host, nor at a third party’s cloud. When ∅pass is to log a
user into a web service, it triggers a Password Reminder process,
resets the old password, and automatically creates a new session
logging the user in. The same procedure will take place when the
set cookie expires.

Compared to traditional authentication methods, there are a few
important properties that make our approach resistant to modern
password attacks. First of all, users’ passwords are not stored in a

https://doi.org/10.1145/3193111.3193113
https://doi.org/10.1145/3193111.3193113

single place and therefore cannot be leaked. Secondly, anytime a
user wants to log into a service using ∅pass, a password-reminder
process is taking place using an e-mail provider. The provider is
invoked only in the login process, and not in further actions, as it
happens with several SSOs, like Facebook Connect [14]. Thirdly,
compared to traditional SSOs which generate authorization tokens,
∅pass does not. ∅pass allows a third party to only vet for the creation
of a new user session. The third party, in contrast with SSOs, does
not generate any access token that can grant access. Only the user’s
web browser has the credentials to authenticate with the target
web site. This is important, because authorization tokens stored in
third parties can be leaked exactly as it happens with passwords.
Forth, ∅pass needs a single password per user. This password may
be stored in a database, which can be leaked [13], however, the user
can create a very hard password that can easily resist in cracking.
Additionally, this (master) password can be protected by other
means, such as 2FA.
Contributions. The contributions of this paper can be summarized
in the following:

(1) We design ∅pass, a novel system which is based on existing
ideas for authenticating a user anytime they want to log into
a service. The authentication is achieved by triggering a new
Password Reminder process, resetting the user’s password.
In addition, we propose two different proactive strategies to
significantly improve the performance of ∅pass.

(2) To explore the feasibility of our approach, we implement
a prototype of ∅pass, as a browser plug-in, for the Google
Chrome browser.

(3) We evaluate ∅pass by using as a use case the popular business-
oriented social networking service LinkedIn. Early results
show that ∅pass, with a proactive strategy deployed, can
perform at least 2 orders of magnitude better than one of the
current state-of-the-art authentication mechanisms.

2 THREAT MODEL
In this paper, we assume attackers that can leak the databases of
services where cryptographically hashed (and salted) passwords
are stored. Attackers have the computational resources for cracking
passwords based on dictionary words, but not for reversing state-of-
the-art cryptographic hash functions. For instance, a long password,
that is hashed with SHA256 can be cracked only if it contains easy-
to-guess dictionary words.

In parallel, we assume attackers that can steal passwords using
real-time phishing and, interactively, steal access tokens, serving
as second factors, sent directly to the user. However, we do not
assume powerful network attackers. For instance, a URL sent to the
user’s smartphone [9] cannot be captured by hijacking the user’s
network connection.

3 RELATEDWORK
Current literature documents the needs of the current state-of-
the-art approaches, which either replace, or facilitate, text-based
password authentication [5]. Below, we briefly expand on each of
these different fields.

3.1 Password Reminders
Every web service that supports password authentication, allows
their users to reset their passwords, delegating thus trust to an
e-mail provider. In case users forget their passwords, a password-
reminder (PR) process can be initiated, using an e-mail account they
have provided during their registration with the particular service.
When such process takes place, users have to follow some steps
(that vary depending on the web service), to reset their password.
Since PR is critical to the operation of ∅pass, we describe here a
generic description of the process, mainly inspired by the procedure
carried out by a popular web service, LinkedIn.

3.2 Single-Sign On Services
There are several approaches trying to deal with the major dis-
advantage of traditional password authentication mechanism: the
fact that the users have to memorize a separate password for each
account they maintain. The technology of Single-Sign on (SSO),
like OpenID [22], Facebook Connect [14, 17], the older, privacy-
sensitive, Mozilla Persona [15], and Google [10], provide users with
the ability of maintaining a single identity, for all the different ap-
plications, so they can authenticate themselves by using a single
trusted identity provider, like Facebook or Google.

However, these providers may carry privacy-related risks, and
also suffer from vulnerabilities themselves [27]. A recent study [25]
associates the limited adoption of such services with several con-
cerns regarding their relinquishing control of the user base, as part
of outsourcing authentication. It is important to stress that SSO is a
free-to-use technology, but their internal design may allow the SSO
providers to track their users’ actions in the web, reconstructing
thus, a large part of their browsing history. Evidently, in the end,
the users are called to buy better security, by paying with their
privacy.

Moreover, the ability to use some SSO services depends on the
location of the user. For example, Facebook Connect cannot be used
in China, where Facebook is not accessible. That means websites
need to support multiple SSO providers, if they want to be sure
that any user can log in, but this still does not address the issue of
people using one SSO and then travelling for a period of time in
an area where this SSO is not available. Usually websites will also
have the normal account system as a backup, which means that
SSO may not trully solve the problem completely.

In ∅pass, we leverage the idea of a single identity, that is essen-
tially responsible of all the user’s authentication needs, and we
couple this identity with an e-mail provider. ∅pass, in contrast with
SSO, delegates trust to the e-mail provider, without revealing any
privacy-sensitive information. Moreover, contrary to SSO, ∅pass is
invoked only during the authentication process, which practically
is rarely done [3, 12], due to the cookies-based authentication of
contemporary web browsers.

3.3 Password Managers
An alternative approach for managing authentication using soft-
ware is Password Managers (PMs) [4, 11, 23]. Using this mechanism,
when a user is to register with a service, the PM will store the pass-
word for the user, and when they are to log into this service at
a later time, the password will be automatically entered by the

2

PM. Although many interesting PMs have been proposed in the
past [4, 11, 23], there are studies [6, 24] questioning the provided
security of some of them.

Password Managers need to store all the user passwords, in a
safe place, and usually encrypted with a master password. They
require the user to only remember one password. Typical places
for password storage are local files inside the users’ devices, third-
party cloud services, or cloud services operated by the password
management software company themselves.

Unfortunately, PMs have two basic limitations. First, in case
passwords are stored at the user’s device, then they have to be
synced across multiple devices. Second, passwords stored in third-
party databases can be badlymaintained, and as a consequence, data
breaches may happen, and passwords may be leaked [13]. Although
∅pass can be viewed as a PM, given that the system manages all
passwords, contrary to other managers, it never stores or reuses
any password. Therefore, the above reported problems associated
with PMs do not apply. In addition to that, ∅pass does not require
the user to remember a single master password.

3.4 One-time passwords
One-time passwords (OTPs) are passwords that are only effective
for a fixed period of time, and become invalid after their first usage.
The advantage of OTPs is that passwords are invulnerable against
spyware (such as key loggers), and replay attacks. In addition, if a
single account password is leaked, by using this mechanism, the
rest of the accounts will remain safe.

However, there are still some disadvantages to this method. One
of them is that the user needs to either maintain a large amount
of private keys (for Time-based One-Time Passwords (TOTP)), or,
in the case of SMS, provide the website with their phone number,
have it available at all times, and manually complete the process for
all required logins. In the case of SMS, the website must also incur
the cost of messaging the user, which is fixed per login attempt,
can be considerable, and may force the website to require SMS
authentication less often for it to be sustainable. Costs from the
popular SMS service Twilio range from $0.01 to $0.10 [2], which
can be considered steep to pay for each authentication. Finally,
implementing OTP requires changes in the server code, while in
the case of ∅pass this thing is not currently required.
∅pass takes an idea from OTPs that increases security, and that

is that passwords should only be used once, and then discarded.
With this in mind, every time ∅pass logs a user in, the password
that was set to the database is random, and different from the one
used in the previous login.

4 ARCHITECTURE
Based on the four different concepts we discussed in Section 3, we
now present, in high-level, the design of our approach. Specifically,
∅pass is a novel authentication system, which is based on password
reminders, and with the help of an e-mail provider that delivers the
one-time passwords to the user every time, it authenticate them to
a web application or service.

In Figure 1, we illustrate the work-flow of an authentication
session when ∅pass is in place. Consider Alice wanting to log into
a web service. ∅pass triggers a password reminder procedure. Once

Normal Semi-Proactive Fully-Proactive

(2) Send
Reminder

(1) Request PR

(4) Reset Password

e-mailbox

Web Browser

(3)
 Fe

tch

Reminder

(5) Redirect User

Figure 1: The basic architecture steps of the three modes of
∅pass. The dashed lines indicate the already completed steps,
before the user requests to access the service.

the request has been sent, the service sends an e-mail to Alice’s
mailbox1. ∅pass polls inbox, checking for an incoming message
related to this process. As soon as the e-mail arrives, ∅pass resets
Alice’s password with a new random password, using the link
included in the e-mail, and after creating the necessary cookies in
the browser, it redirects Alice to the homepage of the service.

Once ∅pass submits a password to a service, then it is immedi-
ately discarded from the device’s memory. Therefore, all passwords
are stored nowhere else than in the web service’s database, crypto-
graphically hashed. Thus, it can not be leaked, phished, or recycled
accidentally by the user across multiple services. Whenever a user
needs to re-authenticate with a service, ∅pass does not provide the
existing password, since no one knows it, apart from the web ser-
vice itself. Instead, ∅pass initiates a new PR process for recovering
the artificially lost password.

Recall that the authentication to a web service is an operation
taking place not very frequently; instead users tend to authenticate
once, and maintain long sessions, which are handled by cookies,
or other browser storage mechanisms [3, 12]. As a consequence,
∅pass do not need to perform the same procedure every time a user
logs in a web service. ∅pass will be invoked again only when the
cookie session expires and user needs to re-authenticate with the
service. This phenomenon avoids, in our case, the e-mail provider
from learning about what the user visits, and when, contrary to
the SSO alternative. ∅pass is able to orchestrate several password
reminder mechanisms, of different web services, and be able to
receive and recognize their e-mails, completing the reset process
when required.

4.1 Proactive modes of operation
A careful reader, at this point, may argue that the time a system
needs to log its users into their desired web services is crucial for its
adoption. Essentially, ∅pass needs the user to wait for the PR e-mail

1Of course, some users may not feel comfortable giving such access to their personal
email account. For this reason, ∅pass suggests the users, instead of their personal
email account, to use a secondary disposable email account dedicated for registration
purposes only.

3

delivery before logging them in. In order to reduce this latency,
our approach provides two extra modes of operation, namely semi-
proactive and fully-proactive, as depicted in Figure 1.

When the user is to authenticate using the semi-proactive mode,
the necessary e-mail has already been sent, so ∅pass resets the
password using this e-mail. When they are to authenticate using
the fully-proactive mode, the whole procedure has been completed,
so ∅pass just redirects the user into the service. More specifically,
in semi-proactive mode, ∅pass requests a PR for each service the
user is not already logged in, as soon as they starts their browser.
Therefore, when the user is to log into one of these services, the
prototype will fetch the already sent PR e-mail to reset the pass-
word, and complete the authentication. On the other hand, using
fully-proactive mode, ∅pass requests a PR, resets the password, and
completes the authentication procedure for each of the services the
user is not logged in, when they starts their browser. When the
user is to log into a service, they will be just be redirected into the
service since the authentication will already be completed.

5 IMPLEMENTATION
In order to explore the feasibility and effectiveness of our approach,
we implement a prototype of ∅pass as a browser extension. As an
example of web service that the user desires to authenticate with,
we use LinkedIn. Our approach leverages password reminders and
therefore it utilizes the password reset functionality of web ser-
vices 2. As a consequence, ∅pass needs access to the corresponding
registration email of the user, which in our test scenario of LinkedIn
this is a Gmail address.

It is important to note at this point, that in ∅pass the remote
web service (e.g., LinkedIn) acts as a non-collaborating service and
thus no modifications are needed in the server side. Users have
just to install the extension in their browser. They are not required
to provide the extension with any credentials but only to give
read-access permission to the dedicated email account of theirs.

The procedure of our prototype is the following:Whenever a web
service is visited, the extension checks if the user is already logged
in by verifying the existence and expiration date of the, related
with the web service, session cookies. In case of a non-logged in
user, ∅pass triggers a Password Reminder (PR) procedure to reset
the password by email.

In order to have read-access to the user’s email inbox and re-
trieve the corresponding PR email, ∅pass uses Atom [1]. Atom is an
aggregator for several sources (e.g., RSS, blogs) including mail in-
boxes. ∅pass utilizes Atom’s Gmail Inbox Feed (GIF) to retrieve the
user’s inbox as an XML document. This XML document provides
metadata (not full content), including the user’s e-mail address,
number of unread mails, the timestamp for each email, their title
and sender, a summary of content (containing just a small part of
the e-mail body), a URL where the ID of the e-mail can be found.

First, ∅pass parses the XML output and obtains the user’s very
own e-mail address needed for the PR. Web services like LinkedIn
during Password Reminder provide the user with a form, where the
user has to fill in their e-mail address. The extension automates this

2Some web services impose restrictions on the frequency one can reset a password
within a day. In ∅pass we use this functionality only upon cookie expiration fully
complying with such application limits.

functionality by directly fill and submit through AJAX-performed
HTTP Requests the email address form. Next, the extension polls
the Atom feed, until the incoming PR e-mail is received. Whenever
a new email is received ∅pass analyzes the XML provided metadata
to identify from the sender and title if the email is the PR email that
it waits for. If so, ∅pass uses the e-mail ID to fetch the entire body
of the e-mail from the email provider. We assume at this point that
the user has an active session with his email account so usually
no login password for Gmail would be required that could cause
additional delays to the authentication operation.

In or our testing case, LinkedIn in its PR e-mails, sends to the
users a link to a website to complete the reset procedure by filling up
a form with their new password. Since ∅pass knows this website’s
URL, it automatically submits the new password by using a fresh
randomly generated token. Then the extension redirects the user
to the LinkedIn homepage, and the corresponding cookie is auto-
matically created. After that, the user is successfully authenticated
and they can continue browsing the web service.

We implement our prototype in Javascript as an extension for
the popular web browser of Google Chrome 3. In order for ∅pass
to perform all necessary HTTP requests, it uses the popular AJAX
XMLHttpRequest Web API [26].

6 EVALUATION
In this section, we evaluate the performance of each internal step of
∅pass and the performance gains of its different modes of operation.
Then, we compare this performance against the current state-of-
the-art authentication mechanism. Finally, we conduct a security
evaluation of our approach.

6.1 Performance evaluation
∅pass breakdown: ∅pass’s operation can be broken down in 5
core steps which include the following:
(1) Initialize: the first step, where ∅pass checks if the user is already

logged-in by searching the for the associated session cookies
in the user’s browser.

(2) Request PR: if the user is not logged-in, ∅pass requests from the
service to reset the password by issuing a Password Reminder
(PR) email.

(3) Fetch PR: as a next step, ∅pass (by linking with the user’s ded-
icated email client) polls periodically for the appropriate PR
email.

(4) Complete Process: once the PR e-mail arrives, ∅pass completes
the procedure by creating a long random token, which is used
as the new password, and submits the final form to reset the
user’s existing one.

(5) Redirect: Finally, the ∅pass redirects the user to the service’s
webpage, and they can continue browsing as a fully authenti-
cated user.

We run our approach 50 times throughout 1 day and in Figure 2
we plot the average execution time per step. The overall time our ap-
proach needs to authenticate a user ranges from 6.2 to 11.7 seconds
(8.3 seconds on average).

3Of course, our extension can be easily ported to other browsers as well.

4

 0.01

 0.1

 1

 10

Initialize
Request PR

Fetch PR

Complete Process

Redirect

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

Steps

Figure 2: Average execution time for each step of ∅pass. As
expected, the “Fetch PR” step which includes the PR e-mail
transmission takes around 5.3 seconds on average, imposing
the higher latency to the overall system’s performance than
the rest of the steps.

This significant deviation is caused mainly due to the variation
of the PR e-mail transmission time of Fetch PR step. It is apparent,
hence, that this particular step is the more costly, responsible of the
64% of the overall execution time of ∅pass. It’s important to note,
at this point, that the PR e-mail transmission time highly depends
on the users’ network speed and location, as well as the remote
server’s current load.

Furthermore, as expected, we see in Table1 the steps that require
communication with the service and HTTP request transmission
contributing more to the overall latency (Request PR: 15%, Com-
plete Process: 16%) than the rest local processing steps (Initialize:
4.5%, Redirect: 0.2%).

Proactivity: The overall latency of ∅pass (i.e., 8.3 seconds on
average) sounds impractical for a user to log into a service. From
our experiments, we see that Fetch PR step is able to skyrocket
the overall latency overhead of ∅pass. To mitigate this issue, as
we discussed in section 4.1, we introduce in ∅pass two modes of
operation. These more proactive modes are able to eliminate the
idle times of the system. To achieve that, we pro-actively perform
the most time-consuming functionalities before the user requests
access to a service. More specifically:

(1) Semi-Proactive: Using Semi-Proactive mode of ∅pass, the PR
email gets requested and fetched before the moment the user
wants to log into a service. This means that ∅pass upon login
request is ready to move directly to Complete Process step,
reset the password, and redirect the user into the service. As
we can see in Figure 2, the average time of these steps is only
2.3 seconds.

(2) Fully-proactive: Using the Fully-proactive mode, the whole au-
thentication procedure of ∅pass has already been completed
asynchronously, as soon as the extension detects the web ser-
vice’s expired session cookies. As a consequence, the moment

Step Portion

Initialize 4.5%
Request PR 15%
Fetch PR 64%
Complete Process 16%
Redirect 0.2%
Overall ∅pass execution time 8.3 sec

Table 1: Contribution to the overall execution time of ∅pass
for the different internal steps.

the user attempts to log into the web service, ∅pass simply fi-
nalize the password reset procedure redirecting the user to the
service. The average time for the entire process in this scenario
is 0.015 to 0.020 seconds, significantly improving the overall
user experience making the ∅pass operation fully transparent.

∅pass Vs. SSO - performance comparison: SSO is one of
the state-of-the-art authentication mechanisms to date. In Figure 3,
we compare the average execution time for the threemodes of ∅pass:
(i) plain, (ii) semi-proactive, (iii) fully-proactive, and Facebook SSO,
namely Facebook Connect, that a user can use to authenticate them-
selves with LinkedIn. Using Facebook Connect, the time needed
for authentication ranges from 0.9 to 3.5 seconds, with an average
of 2.3 seconds. This is lower than what the normal mode of ∅pass
requires and directly comparable with semi-proactive mode. Yet, it
is interesting to see that fully-proactive mode takes only 0.018 sec-
onds on average, meaning that it needs only 1% of Facebook SSO’s
overall time. It is also worth noting that contrary to Facebook’s
SSO, ∅pass is applied to unaware services without requiring any
modifications on the server side.

6.2 Security Evaluation
Initially, it is important to denote the attacks that are beyond the
scope of ∅pass. Specifically, in case of attackers able to take control
of the user’s device, ∅pass cannot provide any defense. Of course,
an attacker with such capabilities can retrieve the user’s passwords
in several ways (keylogger, browser session hijacking etc.).

As discussed in Section 4, ∅pass collaborates with an e-mail
provider (Gmail in our prototype), in order to receive the necessary
password reminders. Similar to the above adversarial model, ∅pass
is unable to defend the user, in case of a very capable attacker able to
compromise the entire operation of the e-mail provider (i.e., Google
in our case).

On the other hand, ∅pass raises the bar against attackers that
can leak the provider’s password database, phish [7], or real-time
phish the credentials of a Gmail account [19]. The user has a pretty
strong (computationally hard to crack) e-mail password, and the
user protects their password with 2FA. Although, these techniques
(strong password, 2FA) are available today, they are not always
adopted by users [21], since usability is heavily reduced. With
∅pass, we maintain usability, since we need to apply all these only
on a single password. In parallel, assuming that 2FA is implemented
correctly, for instance by sending code (in the form of a clickable
URL) and not just an access token [9], ∅pass can protect users even
when a real-time phishing attack is in place.

5

 0.01

 0.1

 1

 10

0pass
0pass

semi-proactive

0pass
fully-proactive

Facebook SSO

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

Figure 3: Average execution time of the three different
modes of ∅pass, compared to Facebook SSO. As we see, al-
though Facebook SSO takes quite less than plain ∅pass to
authenticate the user, fully-proactive mode of ∅pass signif-
icantly outperforms Facebook SSO requiring only 1% of its
execution time!

Finally, ∅pass does not generate authorization tokens as tradi-
tional SSOs do. ∅pass allows a third party (i.e., the e-mail provider)
to only vet for the creation of a new user session, exactly as it
happens now when the user has lost their password. Unlike SSOs,
the e-mail provider does not generate any access token that can
grant access. Only the user’s web browser has the credentials (i.e., a
session cookie) to authenticate with the target web site. Notice, that
authorization tokens stored in third parties can be leaked exactly
as it happens with passwords.

7 CONCLUSION
In this paper, we designed, implemented, and evaluated ∅pass: a
system that combines ideas from password reminders, single sign-
on services, password managers, and one-time passwords, and
provides a novel mechanism for user authentication based on server-
generated one-time passwords though the well known Password
Reminder process. In ∅pass no passwords are stored in the user side
and the user does not need tomemorize anything. As a consequence,
passwords cannot be leaked or stolen, and the user receives better
protection in phising attacks. We implemented ∅pass as a Chrome
browser extension, and evaluated it with LinkedIn. Our approach,
when compared with Facebook Connect, has a negligible overhead
if ∅pass operates in a proactive mode.

Acknowledgments
The research leading to these results has received funding from the
General Secretariat for Research and Technology (GSRT) of Greece,
the Hellenic Foundation for Research and Innovation (HFRI) and
European Union’s Marie Sklodowska-Curie grant agreement No
690972 (project PROTASIS). The paper reflects only the authors’
view and the Agency and the Commission are not responsible for
any use that may be made of the information it contains.

REFERENCES
[1] Gmail inbox feed. https://mail.google.com/mail/feed/atom.
[2] Twilio pricing page. https://www.twilio.com/sms/pricing/us, 2018.
[3] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user

behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, 2009.

[4] H. Bojinov, E. Bursztein, D. Boneh, and X. Boyen. Kamouflage: Loss-resistant
password management. In Proceedings of the 15th European Symposium On
Research In Computer Security, September 2010.

[5] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace
passwords: A framework for comparative evaluation of web authentication
schemes. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 553–567, Washington, DC, USA, 2012. IEEE Computer Society.

[6] S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and critique
of two password managers. In 15th USENIX Security Symposium, USENIX
Security, 2006.

[7] S. D’Alfonso. Phishing attacks collect 70 percent of credentials within the first
hour. https://securityintelligence.com/phishing-attacks-collect-70-percent-of-
credentials-within-the-first-hour/, 2017.

[8] R. Dhamija, J. Tygar, and M. Hearst. Why phishing works. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, SIGCHI, 2006.

[9] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The password reset mitm
attack. In 2017 IEEE Symposium on Security and Privacy (SP), pages 251–267,
May 2017.

[10] Google Developers. Google Accounts Authentication and Authorization.
https://developers.google.com/accounts/docs/GettingStarted, 2018.

[11] J. A. Halderman, B. Waters, and E. W. Felten. A convenient method for se-
curely managing passwords. In Proceedings of the 14th international conference
on World Wide Web, WWW, 2005.

[12] J. Huang and R. W. White. Parallel browsing behavior on the web. In Proceed-
ings of the 21st ACM conference on Hypertext and Hypermedia, 2010.

[13] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and A. D. Keromytis. Sauth:
Protecting user accounts from password database leaks. In Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
’13, pages 187–198, New York, NY, USA, 2013. ACM.

[14] M. Miculan and C. Urban. Formal analysis of facebook connect single sign-on
authentication protocol. In Proceedings of the 37th International Conference on
Current Trends in Theory and Practice of Computer Science. Springer, 2011.

[15] C. Mills. Mozilla persona project. https://developer.mozilla.org/en-
US/docs/Archive/Mozilla/Persona, 2017.

[16] P. Moore. Does two factor authentication actually weaken security? 2015.
[17] D. Morin. Announcing facebook connect.

https://developers.facebook.com/blog/post/2008/05/09/announcing-
facebook-connect/.

[18] D. Moth. Uk shoppers abandoned over Âč1bn of online transactions in
2011. https://econsultancy.com/blog/9434-uk-shoppers-abandoned-over-1bn-
of-online-transactions-in-2011, 2012.

[19] D. Olenick. Massive google docs phishing attack targeted credentials, permis-
sions. https://www.scmagazine.com/massive-google-docs-phishing-attack-
targeted-credentials-permissions/article/654938/, 2017.

[20] Openwave Mobility. https://owmobility.com/press-releases/research-shows-
wasting-16-billion-hours-year-hunting-passwords/, 2017.

[21] T. Petsas, G. Tsirantonakis, E. Athanasopoulos, and S. Ioannidis. Two-factor
authentication: is the world ready?: quantifying 2fa adoption. In Proceedings
of the eighth european workshop on system security, page 4. ACM, 2015.

[22] D. Recordon and D. Reed. Openid 2.0: a platform for user-centric identity man-
agement. In Proceedings of the ACM workshop on Digital Identity Management,
2006.

[23] B. Ross, C. Jackson, N.Miyake, D. Boneh, and J. C.Mitchell. Stronger password
authentication using browser extensions. In Proceedings of the 14th USENIX
Security Symposium, USENIX Security, 2005.

[24] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson. Password managers:
Attacks and defenses. In 23rd USENIX Security Symposium (USENIX Security
14), pages 449–464, San Diego, CA, Aug. 2014. USENIX Association.

[25] S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov. A billion keys, but few
locks: the crisis of web single sign-on. In Proceedings of the New Security
Paradigms Workshop. ACM, 2010.

[26] W3Schools. Ajax - the xmlhttprequest object.
https://www.w3schools.com/js/js_ajax_http.asp, 2018.

[27] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through face-
book and google: A traffic-guided security study of commercially deployed
single-sign-on web services. In Proceedings of the 33rd IEEE Symposium on
Security and Privacy, 2012.

6

https://mail.google.com/mail/feed/atom
https://www.twilio.com/sms/pricing/us

	Abstract
	1 Introduction
	2 Threat Model
	3 Related Work
	3.1 Password Reminders
	3.2 Single-Sign On Services
	3.3 Password Managers
	3.4 One-time passwords

	4 Architecture
	4.1 Proactive modes of operation

	5 Implementation
	6 Evaluation
	6.1 Performance evaluation
	6.2 Security Evaluation

	7 Conclusion
	References

