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ABSTRACT
Without depending on heavy runtime support, Rust can realize fast
machine code that mitigates most of the common attacks associated
with memory-corruption and can appear in all unsafe machine code
developed using C/C++. Most of the work for producing machine
code with security guarantees is carried out at compile-time by
the Rust compiler. However, at runtime, there is no mechanism
to ensure that the produced security guarantees, as computed at
compile-time, are still in place.

In this paper, we explore the possibilities of an attacker fabri-
cating Rust binaries so that they are on purpose vulnerable. We
show that it is possible to modify automatically, and at large scale,
binaries so that certain defences, placed by the Rust compiler, are
removed. We introduce a generic problem, and focus on concepts
of spatial and temporal safety. Finally, we produce a validator that
assesses if all checks ensuring spatial and temporal safety remain
intact within a Rust binary, before executing it. Our work is a step
towards validating Rust binaries at load time so that security guar-
antees computed at compile-time are effective at runtime.
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1 INTRODUCTION
Programming systems can be considered safe or unsafe based on
how they manage memory. Traditionally, systems code is built us-
ing a loose memory model, such as the one provided by C/C++.
This gives developers flexibility in handling memory as they like,
however, it also opens the space for devastating security issues,
such as memory corruption. Nevertheless, programmers hesitate
in switching to memory-safe programming systems, since the over-
heads of memory management may be critical, especially when
developing low-level code. As an answer to this, lately we have seen
new programming systems that provide memory safety without
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the need of heavy runtime support. A prime example of such a
system is Rust.

Rust provides a new programming paradigm where the compiler
rejects programs that are potentially vulnerable. Additionally, the
Rust compiler enhances the produced machine code to adhere to
several checks that can ensure both spatial and temporal memory
safety without a runtime system. This approach, which does not
rely on a special runtime system, can produce fast machine code,
comparable to the one produced by a C or C++ compiler. However,
the absence of a runtime system allows for modifying the produced
machine code so that certain checks are intentionally omitted.

Producing deliberately vulnerable programs is not new; in the
past, it has been shown that an attacker can introduce vulnera-
bilities in applications that can be downloaded from an appstore
with the purpose of exploiting them, once they are installed in
a large user-base [23]. Although producing deliberately vulnera-
ble programs in memory-unsafe programming systems, such as
Objective-C, C, and C++, is almost straight-forward, performing
a similar task with memory-safe programming systems, such as
Rust, is unexplored. The implications of doing this with Rust can
be significant. As an example, consider an appstore that advertises
the distribution of secure code, by means of supporting only Rust,
or other similar systems, as their development platform.

In this paper, we explore the possibilities of an attacker for de-
liberately altering the machine code produced by a Rust compiler
so that memory safety is not preserved, anymore. Through our
attacks, we argue that security that is vetted at compile time, such
as the one imposed by the Rust compiler, should be also reviewed
at runtime. In principle, we argue that Rust’s machine code should
be validated before executing, in order to ensure that the binary
is indeed memory safe. Validating compiled code is not new; for
example NaCl code [7], which is sandboxed by means of SFI, is also
validated during loading, another example is JavaCard with verifi-
cation of JVM bytecode [22]. In this paper, we do the first steps of
producing a Rust validator that assesses if certain checks produced
by the Rust compiler have not been altered in a Rust binary.

Our main contributions can be summarized as follows.
• We explore how machine code produced by a Rust compiler
can be modified to be intentionally vulnerable;

• We implement a tool that can modify automatically buffer
overflow checks in Rust binaries so they are not memory
safe, anymore;

• We develop a validator that can assess, whether the checks
introduced by the Rust compiler have been modified.

2 BACKGROUND
Memory Safety. A recent survey showed that 60-70% of vulnera-
bilities in iOS and macOS [11] and 70% and 90% of the ones found by
Microsoft and Google [1, 19] are memory-safety related. These bugs
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lead to unexpected behavior, crashes, and arbitrary code execution,
since there is no runtime to enforce a type of runtime exception.
An overread bug can expose sensitive information (e.g., cookies,
passwords) or security-related data for bypassing defences, such
as stack canaries [5] and Address Space Layout Randomization
(ASLR) [18]. An overwrite bug can be exploited for writing past the
end of a buffer and corrupt control data (e.g., a return address or
VTable pointer) for hijacking the control flow of the program.

Rust. Rust is a systems programming language adhering to
design goals of both performance and memory safety. It ensures
memory safety at compile time by enforcing certain rules about
how code is written and structured, without using runtime support
or any Rust specific review process.

Rust’s Spatial Safety. The Rust compiler allocates statically
sized buffers on the stack and prevents buffer overflows by emitting
snippets of bounds checking code when using them. Similar code
can be emitted for integer overflows if opted by the programmer.

Rust’s Temporal Safety. Rust, enforces temporal safety using
the “Borrow Checker” [15]; that operates on the Mid-level Inter-
mediate Representation (MIR) [16] from which the LLVM IR is
produced. The Borrow Checker enforces the Ownership, Borrow-
ing and Lifetime concepts. With the Ownership rules [20], rustc
dictates memory management with automatic memory allocation
and deallocation. Each variable is called the owner of a value and
only one owner can exist at a time. When the owner goes out of
scope, the value is deallocated, when the value is assigned to an-
other variable the ownership is transferred to the new variable.
With the Borrowing concept [21], Rust instead of transferring own-
ership, permits another variable to borrow the value. This allows
arbitrary number of immutable references (read-only references),
but only one mutable reference (read-write) at a time. Lifetimes [8]
are compiler or programmer assigned stubs, to enforce the owner-
ship model and prevent dangling pointers.

Threat Model. We consider an adversary that deliberately tam-
pers with the code of a compiled Rust binary to introduce inten-
tionally a memory-corruption vulnerability. Normally, this is not
possible, since the Rust compiler generates memory-safe code. We
follow a similar scenario demonstrated by Wang et al. [23], where
a developer creates deliberately a buggy application and submits it
to an appstore. Since the malicious user is the actual app-developer,
the digital signature cannot be used for detecting whether the ap-
plication has been tampered with, and the binary can be published
to the appstore as a code-signed binary. Recompilation cannot be
a remedy to this problem since companies refuse to give access
to their source code due to industrial secrets, and the app-store is
limited to reviewing the binary only. This further highlights the
validator that we contribute in this work, verifying whether the
security checks introduced by the Rust compiler remain intact.

These applications are commonly known as Jekyll apps; applica-
tions that are remotely exploitable with malicious control flows that
are not present during the review process, but manifest from the
signed code when the application reaches the end-user device. The
attacker does not introduce these changes a priori as the screen-
ing process can capture them. We assume that the changes are
stealthily embedded in the binary to avoid detection; binaries with
entirely removed checks do not follow Rust rules and are rejected
by the app-store screening process. Although Jekyll apps have been

extensively studied in the context of memory-unsafe programming
systems, such as Objective-C, where memory corruption vulner-
abilities can be trivially introduced to the code, in this paper, we
explore the feasibility of this approach in Rust, which, in principle,
is memory safe. Note that attacks exploiting bugs other than those
prevented by the use of Rust security checks are not the focus of
this paper. These bugs can anyway be exploited even without tam-
pering with the Rust checks. Instead, in this paper, we demonstrate
the possibility of tampering with a compiled with Rust, and thus
seemingly safe, binary to introduce bugs.

3 METHODOLOGY
Violating Rust’s Spatial Safety Techniques. Rust’s buffer over-
flow checks compare the current index to the length of the array.
If the index is greater than the length, the program terminates,
preventing memory corruption. The format of this check varies
based on the compilation’s optimization level (debug and release
modes). We create examples using statically allocated arrays, locate
the safety checks the Rust compiler generates for protecting code
and modify the safety check using binary re-writing.

Buffer overflow attack. We use two buffers, copying the con-
tents of the larger one to the smaller; by manipulating the buffers
we force rustc to emit compiler checks. An example of compiler
check is shown in Listing 1. This check evaluates the indexing
variable of the buffer against its length; if the index exceeds the
buffer length, the program crashes and raises an exception of type
panic_bounds_check. The next step is to modify this check by
allowing the index to be greater than the buffer length, thereby,
introducing an overwrite bug, copying the larger buffer into the
smaller one and overwriting the stack.

We also create a shellcode that overwrites the return address of
the currently executing function with the address of a “malicious”
function planted in the binary, redirecting the execution flow of the
program to the malicious function and executing arbitrary code.
1 cmp $0xf ,% rax −modi f i ed −> cmp $0x100 ,% rax
2 s e t b %a l
3 t e s t $0x1 ,% a l
4 j n e 0 x55555555d766
5 jmp 0 x55555555d7b5

Listing 1: Modified buffer overflow check.

Depending on the program, the shellcode may need to contain
other artifacts, e.g., the address of the buffer, its length, since it uses
the stack to manipulate spatial data. In these cases, an overread
bug is needed to leak contents of the stack; even though Rust does
not use stack smashing protection outside nightly builds [9]. A key
requirement for the attack is that the modified compare instruction
(cmp) uses the same number of bytes as the original one. An adver-
sary cannot use any arbitrary value to patch the check, as the x86
instruction set uses variable length commands, and the number of
bytes used can vary.

Detecting Buffer Overflow Checks. For detecting buffer over-
flow checks in Rust binaries, we rely on heuristics that reflect ob-
servations from a large pool of compiled binaries covering various
types of checks including optimized ones.

Heuristic 1. Buffer bounds check has a branch to a panic exception
function called panic_bounds_check. This function is executed
when there is an out-of-bounds access on arrays or slices, including



Validating Memory Safety in Rust Binaries EuroSec ’24, April 22, 2024, Athens, Greece

the vector and string types of Rust. We locate that call to ensure
all identified checks specifically relate to bounds checking.

Heuristic 2. Before invoking the exception function, an argu-
ment preparation occurs, typically consisting of 2–3 assembly in-
structions. We gather the addresses of the instructions preceding
the call and create a list (“destination address list”). We explore
the disassembly of each function locating branches and check
whether the branch target address is in the destination address
list. Heuristics 1 & 2 work for all types of checks since the check
format is not involved. They focus on locating the exception func-
tion calls (panic_bounds_check calls), and create a list with ad-
dresses that are target addresses of branches that jump to the
panic_bounds_check function call.

Heuristic 3. Each unoptimized check typically comprises a maxi-
mum of five instructions. To locate the instructions responsible for
bounds checking, we detect branch instructions targeting addresses
in the destination address list, and backtrack until a compare instruc-
tion is found or maximum number of instructions (5), is reached.

We realize our check detection methodology, incorporating the
aforementioned heuristics, through an automated locating tool,
namely locator, that searches for the compiler safety checks in the
disassembly of a given binary. The output of the locator is a file
containing all checks found in the binary and a JSON log containing
the checks found per function (used by the validator –see Sec. 4).

The check location procedure requires the detection of the panic
_bounds_check function address, which cannot be done through
symbols since we assume stripped binaries. To accurately find the
address of the panic_bounds_check, we track all the calls (direct
and indirect) in the binary. We use multiple instances of disas-
sembled code of the panic_bounds_check function from different
binaries to extract general regular expressions for its instructions.
When this call-tracking process is finished, the locator creates a list
of the addresses called. For every address found, we disassemble 21
instructions (length of panic_bounds_check) and match them to
the regular expressions.

In summary, the locator’s procedure is as follows: (1) Locate
all functions in the binary, (2) Locate the address of the panic
_bounds_check function, by inspecting all functions — Heuristic
#1, (3) Inspect all functions and create the “destination address list”
(addresses in argument preparation) — Heuristic #2, (4) Locate all
branches in the binary and filter out branches that do not target
addresses in the “destination address list”, (5) For each branch with
target address in “destination address list”, backtrack until a cmp
instruction is reached (max. 5 instructions) — Heuristic #3.

The locator is capable of classifying detected checks into differ-
ent categories based on their characteristics. Binaries compiled in
debug mode have checks that consist of 5 instructions, compared
to 2 instructions in release mode. The locator categorizes checks
into optimized and regular based on the number of instructions in-
volved. Each category includes subcategories like “cmp reg, reg”,
“cmp reg, value” and, “cmp reg, symbol” along with a general
subcategory for other types of checks not matching these criteria.
The tool classifies the checks into subcategories based on the type
of instructions used, e.g., “cmp rax, rcx” or “cmp rax, 0x100”.

Evaluating the Locator’s Performance. We evaluate the locator
by comparing its output against a ground truth provided from a

symbol-based tool, which locates the panic_bounds_check func-
tion using function symbols and using the same heuristics as the
locator. We evaluate the performance of the locator on Github and
artificial binaries. Artificial binaries are small programs we create
where we manipulate buffers to force the compiler to add buffer
overflow checks. We also gather applications from GitHub written
in Rust and serve a utility i.e. a Rust implementation of du tool, a
JSON log file viewer, a command line csv toolkit etc; we clone their
source code and compile them using default optimization.

In total, we evaluate the locator using 36 binaries — 12 artificial
and 6 binaries from Github, and their equivalent stripped versions.
In Table 1, we compare the checks found by our locator on the
unstripped versions (column 3) with the ground-truth (column 2)
and the results of the locator on the stripped versions (column 4).
For each binary, we report the number of detected checks along
with the respective accuracy. The locator manages to find all (100%
of) the checks in unstripped binaries and a large percentage of
the checks in stripped ones. The average deviation of the locator’s
performance on unstripped and stripped binaries is 28.1%.

The process of disassembling, splitting code to Basic Blocks
(BBL) and identifying functions is harder on larger stripped binaries.
Since the locator operates on a function-wide level the function
identification process can affect the accuracy of the locator tool.

Table 1: Performance of the locator tool in detecting checks
in unstripped binaries and their stripped versions.

Binary Name Ground Truth Located Checks Located Checks (stripped version)
#0 104 104 (100%) 93 (89.42%)
#1 103 103 (100%) 92 (89.32%)
#2 95 95 (100%) 79 (83.15%)
#3 103 103 (100%) 92 (89.32%)
#4 93 93 (100%) 83 (89.25%)
#5 106 106 (100%) 92 (86.79%)
#6 90 90 (100%) 85 (94.44%)
#7 103 103 (100%) 92 (89.32%)
#8 96 96 (100%) 86 (89.58%)
#9 89 89 (100%) 57 (64.04%)
#10 86 86(100%) 54 (62.79%)
#11 103 103 (100%) 71 (68.93%)

dust [2] 397 397 (100%) 278 (70.02%)
fblog [3] 416 416 (100%) 166 (39.9%)
runiq [24] 280 280 (100%) 90 (32.14%)
xsv [4] 486 486 (100%) 316 (65.02%)
sk [13] 424 424 (100%) 238 (56.13%)

ssurl [17] 526 526 (100%) 306 (58.17%)

Rust’s Temporal Safety Techniques. Multiple mutable refer-
ences on the same object. Temporal safety is provided by the borrow
checker which ensures that there is only one mutable reference to
the same value in memory. When our code is invalidated it means
that the Rust compiler will not produce an executable. In this Proof
Of Concept (POC), we use a buffer (b1) with a mutable reference
(b2), and another reference (b3) to a second buffer (s), and use b2, b3
to manipulate the two buffers. In this example we perform binary
rewriting, to transfer the address of b1 to the b3 reference after
compilation. This means that we create three references that can be
used to modify the memory pointed by b1, an operation prohibited
by Rust. We showcase that with binary re-writing we can create
arbitrary references to the same buffer.

The assembly code of this POC before and after the modification
is provided in Listing 2. An important aspect of buffers in Rust is
that they are always initialized before use. In our case, we replaced
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“lea rax, [s]” instruction, with “lea rax, [b1]”. The new
instruction loads the effective address of buffer b1 to rax. Thus,
when the program executes the instruction “mov qword [b3],
rax”, it moves the address of b1 buffer to b3 instead of s. Since
the new instruction is not the same length as the previous one,
we realign the binary using nop operations while in a real-world
scenario this would be obfuscated.

1 # pas s r e f e r e n c e o f b1 to b2
2 0 x00009027 l e a rax , [ b1 ]
3 0 x0000902c mov qword [ b2 ] , rax
4 # i n i t i a l i z a t i o n o f the b u f f e r o f b3 r e f e r e n c e
5 0 x00009034 l e a rd i , [ s ]
6 0 x0000903c xor e s i , e s i
7 0 x0000903e mov edx , 0 x28
8 0 x00009043 c a l l sym . imp . memset
9 # pas s r e f e r e n c e o f s to b3
10 0 x00009048 l e a rax , [ s ]
11 0 x00009050 mov qword [ b3 ] , rax
12
13 # L in e s 10 and 11 a f t e r mod i f i c a t i o n :
14 # pas s r e f e r e n c e o f b1 to b3
15 0 x00009048 l e a rax , [ b1 ]
16 0 x0000904d nop
17 0 x0000904e nop
18 0 x0000904 f nop
19 0 x00009050 mov qword [ b3 ] , rax

Listing 2: Assembly code of POC before and after changes.

Use-After-Free. Borrowing and Ownership rules along with life-
times are concepts that Rust uses to avoid dangling pointers and
use after free bugs (automatic memory allocation and deallocation).
We introduce such bugs by creating a reference that points to a
freed memory address, and utilize the code in Listing 3 as a POC.

1 pub s t r u c t User {
2 l ogged : bool ,
3 name : S t r i ng ,
4 password : S t r i ng ,
5 }
6 fn c r e a t e _ u s e r s ( ) −> Box<User > {
7 l e t mut u1 = Box : : < User > : : new ( User : : new ( " Anton i s " , " 1 2 3 4 " )

) ;
8 l e t mut u2 = Box : : < User > : : new ( User : : new ( " Cassandra " , "

myfavpassword " ) ) ;
9 u1 . l o g _ i n ( " 1 2 3 4 " . t o _ s t r i n g ( ) ) ;
10 r e t u r n u2 ;
11 }
12 fn main ( ) {
13 l e t mut u2 = c r e a t e _ u s e r s ( ) ;
14 u2 . l o g _ i n ( " myfavpassword " . t o _ s t r i n g ( ) ) ;
15 }

Listing 3: POC example for Use-After-Free bug.

create_users() function creates two different users 𝑢1 and
𝑢2. Each user has the ability to log in; in this example, 𝑢1 logs
in and 𝑢2 is returned to the caller function. Based on Borrowing
and Ownership rules we know that once the scope of a variable
ends that variable is dropped if no other reference exists for that
variable. Thus,𝑢1 is droppedwhen the function ends and𝑢2 changes
ownership from create_users() function to main() function.

With similar binary rewriting, we make 𝑢2 point to the same
address space as 𝑢1. Then variable 𝑢2 is returned to main() func-
tion as a dangling pointer. When this pointer is used instead of
accessing the address space allocated for 𝑢2 it accesses the address
for 𝑢1, resulting to a use-after-free bug. To properly use binary
re-writing in this scenario we use padding code to accommodate
the code of the attack. We add one jmp instruction with target ad-
dress the code in the padding section, and one jmp instruction at
the end of the injected code, to return back to the original program

execution. The added code performs the reference change, restores
the initial values of the registers used to the values before the jump.
Such modifications are restricted due to binary misalignment. Since
changes can break the binary all the corrupted instructions must
be restored before returning the control to the initial code. With
similar binary rewriting we can bypass other concepts like lifetimes,
thus introducing dangling pointers.

4 VALIDATOR
Validator Procedure.We formalize a validation procedure (val-
idator) for the checks identified by the locator (Sec. 3 focusing on
checks similar to Listing. 1. The validator takes a compiled binary
and a JSON log file generated by the locator as input, which maps
function names to a list of checks found within each function. The
output of the validator is a JSON file containing function names and
their corresponding validation class: benign, undefined or malicious
for functions with tampered checks or borrowing rules violations.

The validator analyzes the binary, identifies existing buffers, and
calculates their lengths. It then matches each check with the buffer
it safeguards. Once the corresponding buffer is determined, the val-
idator reconstructs its version of the check using the buffer’s length
and compares it with the found check. The reconstructed check,
using the actual length from buffer initialization, is considered the
ground truth. If the found check contains a value smaller or equal
to the reconstructed buffer length, it is considered valid. The vali-
dation methodology comprises five (5) distinct phases: (1) reading
input log and analyzing binary, (2) locating buffers, (3) tracking
buffers, (4) validating buffer checks, and (5) validating references.

Reading input log and analyzing binary. The validator reads the
input log file, analyzes the binary, and locates functions in the
binary along with memcpy and memset functions.

Locating buffers. To precisely locate buffers, we rely on the ini-
tialization patterns utilized by the Rust compiler. Safe Rust code
necessitates buffer initialization upon declaration. We’ve identified
three primary initialization patterns: i) usage of memset function
(address extracted in stage (1)), ii) using loops, and iii) using of AVX
type registers with multiple mov instructions. Utilizing these pat-
terns, we construct regular expressions to identify the initialization
code and extract the buffer’s address and length in bytes.

The use of memset and loops are easier to understand; with the
AVX initialization the compiler initializes a vector register and uses
multiple move instructions to transfer the initialization value to
memory. There can be an arbitrary number of moves, however
the addresses start from a higher offset and go to lower, with the
lowest being the buffer base address. Each move initializes a certain
amount of bits based on the AVX register used. These bits may not
be part of the buffer length in source code but serve as alignment
bits, and affect the ground truth length of the validator (larger than
the actual buffer). However, they do not affect the actual validation
procedure, as this memory belongs to the buffer and a valid check
should be smaller or equal to the ground truth. An example for
each initialization pattern is provided in Listing 4. We use buffer
access patterns to convert buffer length from bytes to the source
code buffer length, used by the checks.

1 # ( 1 ) Memset I n i t i l i z a t i o n
2 l e a rd i , [ s ] # b u f f e r a dd r e s s
3 mov e s i , 0 xa # i n i t i a l i z a t i o n va lue
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4 mov edx , 0 xdac # b u f f e r l e ng t h
5 c a l l sym . imp . memset # memset c a l l
6
7 # ( 2 ) AVX I n i t i l i z a t i o n
8 xorps xmm0 , xmm0 # i n i t i a l i z a t i o n va lue ( z e ro )
9 movaps xmmword [ r sp + 1 2 0 ] , xmm0
10 movaps xmmword [ r sp + 1 1 0 ] , xmm0
11 . . .
12 movaps xmmword [ r sp + 4 0 ] , xmm0
13 movaps xmmword [ a r r _ a ] , xmm0 # b u f f e r a dd r e s s
14
15 # ( 3 ) Loop I n i t i l i z a t i o n
16 l e a rax , [ r sp + 20 ] # b u f f e r s t a r t a dd r e s s
17 l e a rcx , [ r sp + 20 ] # b u f f e r end add r e s s
18 add rcx , 0 x50 # b u f f e r l e ng t h in by t e s
19 mov qword [ r sp + 1 0 ] , r cx # d e s t i n a t i o n
20 mov qword [ r sp + 1 8 ] , rax # s t a r t
21 . . .
22 cmp rax , r cx # compar ison
23 j e 0 x90 f a # l oo end
24 mov rax , qword [ r sp + 8 ]
25 mov qword [ rax ] , 0 xa # i n i t i a l i z e b u f f e r
26 . . .
27 jmp 0 x90 c f # loop

Listing 4: The three buffer initilization patterns in Rust.

Tracking Buffers. Locating buffers through initialization patterns
does not locate buffers passed as arguments to other functions. In
Rust, argument passing happens in two ways, by reference and by
value. Rust uses pass-by-value by default and pass-by-reference on
reference passing (using &). In Rust we distinguish references as
mutable (default) and immutable (using mut keyword); this does not
affect the assembly code but is only checked at compile time by the
borrow checker. In pass-by-value, the compiler employs memcpy to
copy the buffer’s contents to a different memory location relative
to the stack pointer (rsp). The new base address is then passed as
a parameter to the callee function, opposed to pass-by-reference,
where the original address is given.

The validator captures buffers given as variables to other func-
tions by tracking call instructions. It maintains a representation of
the buffers initialized in each function. For each buffer the validator
locates all the addresses that point to the checked buffer. Then for
each call found in the function, both direct and indirect, it identifies
if the buffer is passed as argument. The validator covers both pass-
by-value and pass-by-reference argument passing. It backtracks
from the function call and verifies if an address that corresponds
to the checked buffer is loaded to a register used for argument
passing in x86. If the checked buffer is an argument, the validator
first visits the callee function before proceeding to the next call
in the caller function, repeating the same procedure. This recur-
sive process continues for every callee function that the checked
buffer is a parameter to. The validator represents the buffers as: (a)
the function the buffer was initialized in, (b) a list with function
addresses that access the buffer, (c) a list with the registers, that
pass the buffer as argument, (d) a list per function with the buffer
references, (e) the length of the buffer, and (f) the initial address of
the buffer in each function. After the buffer tracking process, the
validator generates a representation for each function, including
buffer addresses, their respective lengths, and a list of addresses
referencing each buffer.

Validating Checks. In a function-wide manner the validator eval-
uates each check separately. Each check has two branches, as seen
in Listing 1. Specifically, the jmp instruction leads to the call of the
panic_bounds_check function, and the jne instruction leads to

the buffer accessing instructions1. We develop regular expressions
to match access-type instructions, and extract the buffer’s address
guarded by the check and the stepping offset (size of each element in
the buffer in bytes). With this information we transform the buffer
length from bytes to the length used in the check. For instance, for a
buffer containing ten 64-bit integers, we find a ground truth length
of 80 bytes, and the check uses a length value of 10. We reconstruct
the ground truth check by dividing the ground truth length (80)
with the stepping offset (8 bytes), to get the actual length (10).

Validating References.We provide a validation method that works
on the disassembly of a binary for attacks on the borrowing and
ownership concepts; it works on a function level and it invalidates a
function with either more than one mutable references (read-write),
or one mutable and one immutable (read-only) references to the
same buffer. Our method validates references independent of scope
(blocks of code where outside the block the reference does not exist)
and catches the attack in Listing 2. We implement this method for
buffer reference validation, but can be expanded to other objects;
provided we locate their initial assigned address.

As a first step, the validator identifies the starting address of
each distinct buffer within the function, then proceeds to verify
the related buffer references. The validator maintains metadata, of
active registers, and references. For active registers the validator
maintains a key-value pair mapping, where key is the register
and value is the address loaded to that register at each point of
time. For the references the validator maintains three different
sets, the previously used reference set, the read-only and read-write
references. The read-only set contains reference addresses used only
for reading from the specific buffer, while the read-write set keeps
addresses used for reading and writing the buffer. The previously
used set contains all the addresses correlated to the buffer until that
point in the procedure (union of read-only and read-write sets).

The validator updates these structures during execution, simu-
lating the dataflow from the initial address to other registers and
addresses. We create regular expressions to locate when an address
is used as read-write address and match the reference transfer from
an address to a register and from an active register to another ad-
dress. The reference validation process demands the concept of
context, which can be thought as the active reference and num-
ber of used references and registers at a point of time. When a
branch instruction is present the context can vary between the two
branches, and thus the validator follows each branch separately,
with the help of two structures: (1) visited addresses, and (2) to-
be-visited addresses. The tool adds the taken and fallthrough edge
addresses to the to-be-visited list and evaluates the addresses with
a Last-In-First-Out (LIFO) manner to keep context relevant.

Steps taken to validate references. In summary, the steps taken
to validate references are: (1) When an active address or the initial
address is moved to a register, add the register-address pair to the
active register mapping, (2) If an active register is used as desti-
nation operand, remove it from active register mapping, (3) If an
active register is used as a source operand and another register is
used as destination operand, add the new register to active register
mapping, (4) When an active register moves value to address retire

1In this paper, we focus on this type of checks. Note, however, that the validator can
be easily extended for considering other checks as well; we leave this as future work.
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active address and mark new address as active; add the old address
to previously used set and the new address to read-only set, (5)
When a regular expression for a write memory access matches an
instruction using an active register, that address is used as a read-
write reference (add reference to read-write set and remove it from
read-only set), and (6) If the active address in validation is in the
read-write set and the validator finds a memory access instruction
where neither operand matches the active address and are in the
read-only or read-write set, the function is deemed malicious.

Evaluation. Dataset Composition. To evaluate the validator, we
compose a dataset consisting of 66 binaries, 42 valid (following
Rust’s rules) and 24 malicious (invalid/modified). From the 42 valid
binaries, 6 are real-world applications taken from GitHub used also
in Sec 3, 18 are toy examples created by us, and the rest are stripped
binaries (6 from GitHub examples and 12 stripped versions of the
toy examples). For the 24 malicious binaries we have: (1) binaries
with modified checks — altered offset value used in the check, to a
larger (invalid) value, allowing for memory corruption; we create
17 binaries by altering 6 GitHub applications and 11 toy examples,
and (2) binaries with modified references — we create 7 binaries
altering 4 GitHub applications and 3 toy examples, using binary
rewriting to create a second invalid reference for a certain buffer.

All binaries are compiled using version 1.70 of the Rust compiler
(rustc), with the default optimization level. In future rustc versions,
slight changes in code generation are expected, necessitatingminor
adaptations to the tools presented in this paper, as our methodology,
in principle, remains the same. Minor adaptations to our tools may
also be necessary when facing large code bases and optimized
binaries, which we consider future work.

Results. For our experiments we define as true positives the num-
ber of times the validator classified a malicious binary as malicious,
false positives the number of times the validator classified a benign
binary as malicious, true negatives the number of times it classified
a benign binary as benign, and false negatives the number of times
it classified a malicious binary as benign.

The summary of the results of the validator prototype are shown
in Table 2. For a binary to be benign it needs to successfully pass
both buffer and reference validation procedures. The validator clas-
sified 41 binaries as benign and 25 as malicious, successfully clas-
sifying 65 out of the total 66 binaries. Specifically, the validator
correctly classified 41 out of the 42 benign binaries (misclassifying
one), and 24 out of the 24 malicious binaries, resulting in a 98%
accuracy rate. These results indicate that the validator successfully
detects invalid code in the given binaries, subsequently marking
them as malicious. Notice that while the validator primarily targets
checks akin to those in Listing 1, it can be extended to validate
other types of checks mentioned in this paper as well.

Limitations. Notice that the validator prototype is not able to
cope with scenarios where functions use a buffer, which is given as
argument, and that function is never called. Rust compiler performs
dead-code elimination in such functions, but with code decorators
this can be prevented and keep the code in the binary; such sce-
nario is apparent as a misclassification in Table 2. Furthermore,
the validator cannot verify checks that correspond to buffers not
found in stage (2) of the validation process, since the respective
ground truth cannot be created. We currently do not consider these
checks in the validator evaluation, and mark them as undefined in

the produced log file. Note that the accuracy of the locator tool
(Sec.3) directly impacts validator’s performance, as checks cannot
be evaluated for correctness if they are never located.

Table 2: Confusion matrix showing the performance of the
validator in classifying benign and malicious binaries.

Binaries (66) Actual Class
Benign (42) Malicious (24)

Predicted
Class

Benign 41 0
Malicious 1 24

5 RELATEDWORK
Wang et al. [23] introduce a novel method that avoids code signing
and app review mechanisms, and hides the malicious behavior of
the application in code that is rearranged remotely after installation
to the user device. Han et al. [10] introduce an attack vector with
applications that have passed Apple’s vetting process and works
on non-jailbroken iOS devices. Dharsee et al. [6] introduce a novel
type of hardware trojans, namely, Jinn that corrupt general-purpose
hardware. They demonstrate the effectiveness of Jinn trojans in
bypassing compiler-based security using the Rust language. Jinn
trojans can manipulate compiler checks on the fly during execution.
Papaevripides et al. [14] discuss attacks on mixed binaries where
“safe code” can assist in bypassing code hardening in C/C++ code,
such as Control-Flow Integrity and SafeStack. Zhuohua et al. [12]
propose an automated bug detection framework for Rust programs,
namely, MIRChecker. This framework operates in Rust’s MIR and
using numerical and symbolic information detects potential run-
time crashes and errors.

6 FUTUREWORK
The locator prototype identifies buffer-overflow checks, but further
(taint) analysis is needed for locating input-dependent guarding
buffers that can be reached by an adversary. In addition, to further
enhance the accuracy of the validator, we aim at accounting for
buffers in objects, e.g., vectors, strings. The validator manages to
find buffers contained in objects, using the initialization patterns.
However, the tool is not (yet) able to correlate the buffers found in
objects with their accesses and, therefore, the checks that guard
them. Moreover, another optimization is to track buffers returned
from functions. The tool tracks buffers that are passed to functions
as arguments; it is possible that checks also correspond to buffers
returned from functions. Implementing these optimizations can
mitigate the undefined results mentioned in Sec. 4.

7 CONCLUSIONS
In this paper, we showed that Rust’s safety measures against buffer
overflows can be neutralized by modifying specific checks in the bi-
nary after compilation, along with safety measures against dangling
pointers. In particular, we introduced a heuristic-based method-
ology that: (a) locates safety checks in compiled binaries, and (b)
automates the binary modification process. Finally, we proposed
a preliminary validation methodology that determines whether a
binary has been tampered with.
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