
rustc++: Facilitating Advanced Analysis of Rust Code
Antonis Louka

louka.antonis@ucy.ac.cy
University of Cyprus

Nicosia, Cyprus

Georgios Portokalidis
georgios.portokalidis@imdea.org

IMDEA Software Institute
Madrid, Spain

Elias Athanasopoulos
athanasopoulos.elias@ucy.ac.cy

University of Cyprus
Nicosia, Cyprus

ABSTRACT
Rust is a popular programming language with strong memory-
safety guarantees, achieved through its ownership and borrowing
model. Rust allows a programmer to escape memory safety using
explicitly marked unsafe code in order to facilitate integration with
existing C/C++ code. Such safe code is not immune to typical mem-
ory errors. To avoid such bugs researchers try to provide both static
and dynamic analysis tools and incorporate C/C++ hardening tech-
niques for unsafe Rust. However, such analysis is not always trivial
as Rust uses multiple intermediate representations (IR), and when
lowering a higher level IR to a lower level IR, all information that
marks a specific block of code as unsafe is lost. Since the two worlds
of Rust, safe and unsafe, are built on different assumptions many
analysis tools and techniques can benefit from knowing where the
safe context changes to unsafe and vice-versa.

In this work, we present a modified Rust compiler (rustc++) that
extends the capabilities of the Mid-level Intermediate Represen-
tation (MIR) to enable serialization and metadata enhancements.
Our framework introduces MIR++, an enhanced MIR representa-
tion that embeds metadata identifying safe and unsafe instructions,
enabling fine-grained safety tracking throughout the compilation
pipeline. Additionally, rustc++ enhances the LLVM-IR representa-
tion and produced binaries with metadata allowing LLVM passes
and post-compilation analysis tools to distinguish between the safe
and unsafe context. Lastly, rustc++ makes preliminary efforts in
serializing Rusts MIR to a portable JSON format using the Serde
serialization library. Our goal is to allow external tools to work on
MIR and its in-memory metadata, without requiring the full com-
piler pipeline. Modifications of rustc++maintain compatibility with
the existing Rust ecosystem while offering a powerful foundation
for future analysis tools.

CCS CONCEPTS
• Security and privacy→ Systems security; Software security
engineering; • Software and its engineering→ Source code
generation; Compilers.

KEYWORDS
Rust, Rust Compiler Extensions, Borrow Checker, Mixed Binaries,
MIR++, Memory Safety

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1563-1/2025/03. . . $15.00
https://doi.org/10.1145/3722041.3723102

ACM Reference Format:
Antonis Louka, Georgios Portokalidis, and Elias Athanasopoulos. 2025.
rustc++: Facilitating Advanced Analysis of Rust Code . In The 18th European
Workshop on Systems Security (EuroSec’25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3722041.3723102

1 INTRODUCTION
Compiler-based analysis plays a critical role in identifying perfor-
mance bottlenecks, security vulnerabilities, and code quality issues.
Traditionally, such analysis has focused on C/C++ through vari-
ous compiler extensions or toolchains. With the introduction of
Rust, which implements a unique memory-safety model, new anal-
ysis challenges emerged. Rust uses a set of compile-time policies,
broadly known as the borrow checker, to achieve memory safety
with minimal performance overheads. While the borrow checker
provides memory safety, Rust allows unsafe operations to facilitate
easier integration with existing C/C++ code. Safe and unsafe code
can co-exist in Rust binaries creating a new set of challenges for
analysis, and hardening tools on how to handle mixed binaries effi-
ciently. In Listing 1 we provide an example on how the coexistence
of the two worlds can affect memory safety.

The pipeline of Rust’s compiler (rustc) also introduces multi-
ple intermediate representations like HIR (High-level Intermediate
Representation) [19] and MIR (Mid-level Intermediate Representa-
tion) [21] before lowering to LLVM’s IR. rustc uses MIR to apply
Rust’s memory-safety policies and optimizations. While MIR is an
ideal representation to take advantage of the Rust specific seman-
tics, it is still missing important information when it gets lowered
from HIR. For example, during the HIR to MIR lowering phase, the
safety context (instructions residing in unsafe code blocks) and
metadata for raw pointers are lost.

Analysts are given two options for analysis when using rustc.
One approach is to use the rustc_driver [18] and rustc_interface [20]
modules provided from the Rust compiler for accessing the HIR and
MIR intermediate representations. These modules provide an API to
the Rust compiler allowing analysts to use rustc as a library. Tools
like Rudra [2], SafeDrop [5], MirChecker [10] utilize this approach
to perform static analysis (control-flow analysis) on MIR and dis-
cover bugs in Rust code. However, a more traditional approach is to
create and add your own passes. rustc enables analysts to create and
add MIR and LLVM-IR analysis passes for optimizations, hardening
and code analysis to the compiler pipeline. This approach is more
involved and should be used when there is a need for changing
MIR data or for having access to lower IRs than MIR.

Works like ERASan [13] utilize such passes while recreating in-
formation that is lost during lowering phases. Specifically, ERASan
tries to incorporate a more efficient approach to an address sani-
tizer (Asan) [32] for Rust binaries by instrumenting only the unsafe

https://doi.org/10.1145/3722041.3723102
https://doi.org/10.1145/3722041.3723102
https://doi.org/10.1145/3722041.3723102

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Antonis Louka, Georgios Portokalidis, and Elias Athanasopoulos

blocks of code. ERASan focuses on the potentially problematic
code, and reduces the performance and memory overheads of the
original ASan. Works like ERASan, with a goal to meaningfully
extend or repurpose traditional analysis frameworks must hijack
the Rust compiler pipeline to integrate more metadata information
to perform their analysis.

In this work we propose an extended version of the Rust com-
piler (version 1.83.0), namely rustc++, that preserves important
metadata for analysis in the rustc pipeline. By providing an en-
hanced MIR version we hope to enable researchers to efficiently
adapt existing analysis techniques from the C/C++ domain to Rust
and create new ones while incorporating Rust’s specific paradigms.
This allows analysis to leverage Rust’s safety properties, optimize
low-level performance and verify security constraints. To foster
further research, we will offer rustc++ as an open-source project,
allowing broader adoption and contributions from the community.
Currently, the rustc++ compiler extension provides the following
key functionalities:

• We embed extra metadata to MIR; specifically, we introduce
MIR++ an enhanced MIR representation that incorporates
additional metadata in capturing the origins of each MIR
statement (safe/unsafe context). This allows a clear distinc-
tion between the instructions originating from safe and un-
safe blocks. This metadata is added to the MIR before any
other optimization passes take place.

• We carry the MIR++ metadata to the LLVM-IR as instruction
metadata. Distinguishing which LLVM-IR instructions are
result of unsafe blocks. We then propagate this metadata
to the binary by creating a custom section with assembly
instructions that are result of unsafe blocks.

• We perform the first steps of MIR serialization. Specifically
we use a serialization mechanism to serialize Rust’s MIR into
a reusable format allowing external tools to perform off-line
analysis, and potentially re-loading the MIR metadata back
to the compiler at a later stage.

In the remainder of this paper, we detail the design and implemen-
tation of rustc++, discuss how MIR++ and serialization work, and
demonstrate usage of the added metadata.

1 fn get_vec () -> Vec <u8> {
2 // create local string variable
3 let mut string_v = String ::from(" deadbeaf ");
4 // create raw pointer from string
5 let mut_raw_ptr = string_v.as_mut_ptr ();
6 let vector_v;
7 unsafe {
8 // create a vector variable from string raw pointer
9 vector_v=Vec:: from_raw_parts(mut_raw_ptr ,string_v.len(),

string_v.len());
10 }
11 return vector_v; // return vector pointing to freed memory
12 }
13 // string_v is dropped , but vector_v is returned
14 fn main() {
15 let vector_var = get_vec ();
16 println !("{:?}" , vector_var);
17 // vector_var freed causing a double free
18 }

Listing 1: Example demonstrating problematic interaction
between safe and unsafe context, using raw pointers.

2 BACKGROUND
Rust language. Rust is a modern systems programming language
designed to achieve high performance while ensuring memory
safety. It enforces memory safety through compile-time checks,
eliminating the need for runtime support. To guarantee spatial
safety, the Rust compiler (rustc) allocates statically sized buffers on
the stack. For each access to these buffers, rustc generates code to
perform bounds checking. Temporal safety is enforced through the
“Borrow Checker” [17], a compilation routine that operates on an
intermediate representation known as the Mid-level Intermediate
Representation (MIR) [21]. MIR serves as the internal layer where
Rust applies both optimizations and safety checks before lowering
the code to LLVM Intermediate Representation (LLVM-IR). The
Borrow Checker enforces Rust’s core memory safety guarantees
by implementing the language’s concepts of ownership, borrowing,
and lifetimes. Ownership provides automatic memory allocation
and deallocation, borrowing allows the use of references [35], and
lifetimes define the scope and duration of variables. These mecha-
nisms ensure memory safety and prevent common errors such as
data races and dangling pointers, without runtime overhead.

Unsafe operations in Rust. The rustc compiler performs static
analysis to verify if code upholds memory safety guarantees. If
the analysis is inconclusive, rustc prefers to reject valid programs
rather than risk accepting unsafe ones. The unsafe keyword allows
programmers to bypass these restrictions, taking full responsibility
for the safety of such operations.

By writing unsafe code, the programmer gains access to what
Rust refers to as unsafe superpowers. These include, dereferencing
raw pointers, calling an unsafe function or method, accessing or
modifying a mutable static variable, implementing an unsafe trait,
and accessing fields of unions [24]. To clarify, it is important to men-
tion that the use of the unsafe keyword does not disable ownership
or borrowing concepts enforced by the borrow checker. Instead it
permits the programmer to perform these five operations (which
are not checked by rustc) freely. This places the responsibility for
safe memory management on the programmer, where errors can
potentially occur.

The use of unsafe blocks in Rust is unavoidable, as many oper-
ations, such as interacting with hardware APIs or implementing
certain data structures like cyclic types (e.g., doubly linked lists)
cannot be performed with purely safe Rust. Developers also en-
counter unsafe code indirectly through both standard (std, core)
and third-party libraries. According to Rust Foundation as of May
2024 Rust significant crates measure to 123,000 with 24,362 of them
using the unsafe keyword (approximately 20% of all crates). More-
over, 35% call other crates that use unsafe keywords, with nearly
20% containing at least one instance of unsafe blocks [1, 34]. The
co-existence and interaction of safe and unsafe Rust code, combined
with logical programming errors can lead to memory safety vulner-
abilities, as seen from works in Rust memory safety (see Sec. 3, and
Sec. 6), and entries in Rust Advisory Database [6] that are similar
to the example in Listing 1.

Rust compiler pipeline. The Rust compiler pipeline involves
multiple lowering stages between Rust’s intermediate representa-
tions (Figure 1). Notably, the Abstract Syntax Tree (AST) is lowered
to High-Level Intermediate Representation (HIR) which closely

rustc++: Facilitating Advanced Analysis of Rust Code EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

Source Code

Lexical
Analysis
Parsing

AST HIR

MIR

LLVM IR

THIR

LLVM
Backend

Machine
Code

Type checking
- typed HIR

Unsafe
information is

stripped

Borrow
checking &

optimizations

Desugaring

Figure 1: Rust compiler intermediate representation lower-
ing pipeline

retains Rust’s syntax. After type checking the Rust compiler gener-
ates the Typed High-Level Intermediate Representation (THIR) [22],
used for MIR construction, exhaustive checks and unsafety check-
ing. THIR is further lowered to MIR, a simpler representation closer
to machine-level code. At this stage all information regarding Rust’s
unsafety context and raw pointers are removed. At the MIR level
rustc performs control-flow-sensitive analysis (Borrow checking)
and enforces the ownership and borrowing rules, while applying
optimizations for efficient code generation The MIR is then lowered
to LLVM IR, used by the LLVM framework [8] to perform target-
specific optimizations. With Rust-specific semantics, like borrow
checking completed, LLVM focuses on machine-level optimizations.
The LLVM backend converts LLVM IR to machine code, performs
final optimizations (e.g., inlining, register allocation), and generates
an executable binary.

3 CHALLENGES FOR RUST MEMORY SAFETY
Despite Rust’s memory safety mechanisms, underlying issues and
bugs are still present in Rust binaries. Several studies have demon-
strated the existence of different vulnerabilities of Rust, resulting
from the way Rust guarantees memory safety, from compiler logic
holes (e.g. the CVE-rs GitHub project [33] creates buffer-overflow
and use-after-free vulnerabilities by using 100% safe Rust code), and
through the Foreign Function Interface (FFI) used for interacting
with other programming languages.

Papaevripides et al. [14] demonstrate the existence of attacks
that bypass C/C++ hardening techniques such as Control-flow In-
tegrity (CFI) and SafeStack. They emphasize that when dealing with
mixed binaries, the interaction of safe and unsafe code weakens the
effectiveness of hardening techniques on unsafe code. In similar
manner, Mergendahl et al [12] demonstrate how languages with
compile-time and runtime safety mechanisms can be affected. The
authors explain that safe code (using compile time checks) and
unsafe code context (using hardening techniques) operate on dif-
ferent and incompatible assumptions allowing attacks that would
be impossible in either context alone to happen when combined.

Currently, rustc is not able to pinpoint if any attacks are possible
due to the interaction of safe and unsafe code. Official Rust tools

like Miri [23] and Rust fuzzing [4] are able to detect some bugs in
Rust code using static analysis and fuzzing, but they are not able
to cover all cases. Rust’s unique memory safety guarantees have
inspired several frameworks aimed at enhancing and evaluating
its safety. Bang et al. in TRust [3] introduce a framework for in-
process isolation of safe Rust code from untrusted components
(unsafe blocks), by allocating them to separate memory regions,
preventing access to critical data in safe regions.

Other frameworks focus on enhancing Rust’s memory safety and
debugging capabilities. Min et al. [13] improve the performance of
Address Sanitizer (ASan) by identifying raw pointers and selectively
instrumenting memory accesses, targeting unsafe regions of Rust
programs, addressing both temporal and spatial safety memory
bugs. Cui et al. [5] employ a path-sensitive data-flow analysis to
detect memory deallocation bugs, such as use-after-free and double
free, focusing on unsafe drop calls. Li et al. [10] (MIR Checker)
perform static analysis (numerical and symbolic constraint solving)
on Rust’s MIR to identify runtime crashes and memory-safety bugs.
Louka et al. [11] validate Rust’s memory safety post-compilation,
using static data-flow analysis on safe Rust binaries. They mention
that mixed-binary validation is still a challenge due to missing
metadata information about the unsafety context.

Some works mentioned so far, modify the Rust compiler to re-
cover information lost during the lowering phases of the inter-
mediate representations used by rustc. While other works utilize
the rustc_driver and rustc_interface modules. Since many defense
and analysis tools rely on this process, we aim to provide a frame-
work that can propagate forward such information for analysis and
defense components to use hassle-free.

4 IMPLEMENTATION
4.1 Metadata propagation
Before discussing the specific changes made to the compiler, we
outline the key stages of rustc, as shown in Figure 1. The Rust com-
piler lowers the Abstract Syntax Tree (AST) to its first intermediate
representation, HIR. HIR closely resembles the Rust source code,
preserving important artifacts and context. At this stage, it is easy
to distinguish between instructions belonging to safe and unsafe
contexts. However, this information is lost during lowering to MIR.
For us this is significant as rustc supports optimization passes at the
MIR level, many of which could benefit from retaining safe/unsafe
metadata. Our objective is to not only maintain this information
during the MIR phase but also propagate it to subsequent stages,
such as LLVM-IR and the final binary, to facilitate further analysis.
To achieve this, we introduce MIR++, an enhanced version of MIR
that restores the lost metadata.

Extending MIR. MIR is the main representation in rustc where
safety-checking and optimizations are performed. To correlate un-
safety information from HIR to MIR we locate unsafe HIR state-
ments. HIR is defined as a map module; rustc uses HirIds which are
identifiers that uniquely identify nodes in HIR map, and the visitor
trait as the default way of traversing HIR. The visitor pattern is a
stateful way of easily traversing heterogeneous data while commu-
nicating information. We implement a custom Visitor to traverse
the HIR map and gather HirIds related to unsafe blocks in a stateful
way (storing unsafe HirIds in specific structures for later use). Our

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Antonis Louka, Georgios Portokalidis, and Elias Athanasopoulos

HIR traversal targets unsafe blocks and functions, as ultimately,
all unsafe behavior originates from these elements. For instance,
implementing an unsafe trait results in either unsafe functions or
calls to those functions enclosed within an unsafe block.

We utilize the unsafe HirIds to implement an MIR pass that
establishes a relationship between MIR instructions and unsafe HIR
instructions. Since there is no existing flag to store this information,
we introduce our own. In rustc, MIR is organized within a Body
object, which includes among other details a list of Basic Blocks
(BBLs). Each BBL contains a series of statements and concludes
with a terminator. MIR instructions within a BBL are commonly
represented by statements [29], while the terminator [31] is a special
statement that marks the end of the BBL, defining the next block
in the control flow. To retain safety information, we extend Rust’s
statements and terminators, adding a custom safety flag indicating
whether the instruction belongs to a safe or unsafe context.

The exact modifications performed to the MIR components,
namely statements and terminators, to include the safety flag are
shown in Listing 2. In practice, we observe that both components
share two key fields; source_info [27], which records the origin
of the MIR entity, and kind [30], which defines various kinds of
statements and terminators that can appear in MIR. We extend
the SourceInfo field by adding an is_safe flag. During the MIR op-
timization phase we create a custom pass that runs before other
MIR passes, setting the value of this flag for both statement and
terminator fields. The SourceInfo struct also includes two additional
fields: span [28] and scope. The span field provides information
about the instruction’s location in the AST and source code, while
scope holds debugging metadata. To determine the exact location of
MIR statements and terminators, we leverage the span field in the
SourceInfo struct. Specifically, we use the unsafe HirIds to retrieve
the corresponding unsafeHIR spans. We then compare the MIR span
against these HIR spans and mark the MIR instruction as unsafe if
the MIR span is contained within the acquired HIR spans.
1 pub struct Statement <'tcx > {
2 pub source_info: SourceInfo ,
3 pub kind: StatementKind <'tcx >,
4 }
5 pub struct Terminator <'tcx > {
6 pub source_info: SourceInfo ,
7 pub kind: TerminatorKind <'tcx >,
8 }
9 pub struct SourceInfo {
10 pub span: Span ,
11 pub scope: SourceScope ,
12 pub is_safe: bool ,
13 }

Listing 2: Modifications done to MIR components: Visual
representation of how the SourceInfo struct is modified to
incorporate the safety context of MIR instructions.

Modifying LLVM-IR.To propagate the unsafetymetadata to LLVM-
IR, we modify the files responsible for lowering MIR to LLVM-
IR. In rustc, the code handling back-end generation resides in the
rustc_codegen_ssa crate [25], which defines an interface for differ-
ent back-ends. Rust supports various back-ends, including LLVM,
Cranelift (for WebAssembly), and GCC. For this work, we focus
on propagating unsafety metadata to the LLVM back-end, which
remains the state-of-the-art framework in modern compiler design.
The implementation of code generation for the LLVM back-end is
handled by the rustc_codegen_llvm crate [26].

We observe that the rustc_codegen_ssa module includes a dedi-
cated submodule for generating back-end IR statements from MIR,
handled by the Builder trait. During compilation, rustc iterates
through the MIR BBLs, and for each block’s statements, it generates
various metadata such as debug and coverage information, along
with back-end IR instructions. The Builder module responsible for
lowering MIR statements and terminators to LLVM-IR instructions
is implemented within the rustc_codegen_llvm crate, utilizing the
LLVM Foreign Function Interface (FFI) integrated into rustc.

To propagate the unsafety metadata, we introduce a new flag
in the Builder dedicated to LLVM-IR generation. This flag is set
to reflect the safety context of the MIR statement or terminator
being lowered. We also implement a function within the Builder
that evaluates the flag each time a new LLVM-IR instruction is gen-
erated. To achieve this, we add invocations of the aforementioned
evaluation function to every method used by the Builder to create
LLVM-IR instructions. Based on the evaluation of the safety flag, we
generate metadata and attach it to the corresponding LLVM-IR in-
struction, marking instructions derived from unsafe MIR statements
or terminators as unsafe. It is important to note that this process
occurs before LLVM-IR optimizations. As a result, some LLVM-IR
instructions, including those marked with unsafe metadata, may
be removed during later stages of optimization by rustc.

At this stage, we annotate each unsafe LLVM-IR instruction
with unsafe_instr metadata and perform two additional core oper-
ations. First, we correlate these annotated instructions with their
corresponding source code using the in-memory debug information
generated by rustc. This allows analysts using rustc++ to export the
human-readable LLVM-IR format and view both the unsafe instruc-
tions and the source code lines that generated them, as shown in
Listing 3. Second, we prepare a log file to facilitate the propagation
of metadata to the final binary produced by rustc++.

1 bb7: ; preds = %bb6
2 %_13 = load i8, ptr %_10.0, align 1, !unsafe_instr !4
3 ...
4 br i1 %_14.1, label %panic , label %bb8 , !unsafe_instr !4
5 bb8: ; preds = %bb7
6 store i8 %_14.0, ptr %_10.0, align 1, !unsafe_instr !5
7 ...
8 !4 = !{!" line:8, col:15, file:src/main.rs"}
9 !5 = !{!" line:8, col:8, file:src/main.rs"}

Listing 3: Example demonstrating howmetadata are depicted
in the LLVM-IR textual readable form.

Modifying the binary. To complete metadata propagation, we
enhance the binary by adding a custom section for analysis, con-
taining addresses or ranges of unsafe assembly instructions. Our
goal is to allow tools like disassemblers and validators to identify
when execution enters an unsafe block. Ideally, this process would
be incorporated into the rustc backend, but since rustc relies on the
LLVM framework for machine code generation, we chose to add
the metadata post-compilation to avoid modifying LLVM’s source
code and needing to recompile the framework, using the LLVM
precompiled binaries provided by Rust.

In the previous subsection, we explained how rustc++ generates
a log file (in JSON format) during LLVM-IR compilation. This log
maps unsafe source code lines to their corresponding files. We
then develop a custom disassembler script to load the binary into
memory and generate disassembly, mapping assembly instructions

rustc++: Facilitating Advanced Analysis of Rust Code EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

to source code lines using debug symbols. Correlating assembly
with source code is complex since a single source line can produce
multiple instructions, some of which may originate from external
libraries or have no direct relation to high-level code. To address this
issue, we perform a function-wide analysis focusing on developer-
written code. We gather assembly instructions per function and
use debug symbols to map them to source lines, marking them
as unsafe, based on the context of those lines. If no mapping is
available, we assign the instruction to the context of the last known
instruction, assuming the unsafe or safe context persists until a
new one is encountered. In simpler terms, if an instruction belongs
to an unsafe source line, all subsequent instructions belong to the
same (unsafe) context until we reach an instruction that belongs to
the safe context.

We note that even if a whole function is marked as unsafe not
all assembly instructions are marked as such, this is because our
approach associates assembly instructions to the unsafe source code
lines. Some assembly instructions such as function prologues or
argument handling, may not directly correspond to any high-level
code. Finally, we create a custom section named .unsafe_info using
objcopy, which stores the addresses of unsafe assembly instructions.
An example of the output from our script, which emits these unsafe
instructions, is shown in Listing 4.
1 0x20c5f: call 0x20ad0 @ line: 5
2 0x20c64: jmp 0x20c66 @ line: 5
3 0x20c66: mov rax , qword [rsp + 0x20] @ line: 0
4 UNSAFE: 0x20c6b: mov al, byte [rax] @ line: 8
5 UNSAFE: 0x20c6d: add al, 0xa @ line: 8
6 UNSAFE: 0x20c6f: mov byte [rsp + 0x17], al @ line: 8
7 UNSAFE: 0x20c73: setb al @ line: 8
8 UNSAFE: 0x20c76: test al, 1 @ line: 8
9 UNSAFE: 0x20c78: jne 0x20ca0 @ line: 8
10 0x20c7a: mov rax , qword [rsp + 0x20] @ line: 0
11 0x20c7f: mov cl, byte [rsp + 0x17] @ line: 0
12 UNSAFE: 0x20c83: mov byte [rax], cl @ line: 8

Listing 4: How assembly instructions can be presented
using custom disassembler script that performs metadata
propagation to the binary

4.2 MIR serialization
In this section we describe our efforts to serialize the MIR repre-
sentation of the Rust programming language. By serializing MIR,
we aim to make it accessible for various tools and analysis without
requiring a full Rust compiler run. Our goal is to allow MIR to be
represented in a portable format, enabling offline analysis. We aim
to repurpose MIR as a reusable and language-agnostic intermediate
representation that retains Rust’s safety properties and borrow-
checking mechanisms, potentially applying them to other contexts
like ensuring safety in C/C++ programs.

We serialize the MIR fields in JSON format, using Serde, the
de-facto serialization library in Rust. Integration into rustc++ is
achieved by leveraging Serde’s directives, such as #[derive(Serialize)],
to automatically derive serialization capabilities for necessary data
structures (e.g., structs, enums, and unions). Fields that should not
be serialized are excluded using the #[serde(skip)] directive.

Since manually adding such directives is not feasible, we stream-
line this process, by creating a script that walks rustc’s directory
structure, loads Rust source code files to the equivalent AST, and
recursively visits the AST to automatically add #[derive(Serialize)]

and #[serde(skip)] attributes to all structs, enums, unions and their
fields. This automated approach ensures that all structs are prepared
for serialization by default, while giving us control to manually
enable specific fields; by removing the #[serde(skip)] directives. Note
that since rustc utilizes complex data structures to store MIR, it
is sometimes necessary to manually implement the Serialization
function for that structure to guide Serde in performing the se-
rialization correctly, requiring additional manual effort from the
rustc++ developers. In this work we annotate all structs and per-
form preliminary serialization, storing a number of MIR fields and
in-memory metadata in the JSON log.

Despite annotating all detected structs, we focus on serializ-
ing only MIR-specific metadata. According to the Rust compiler
documentation; the MIR of a function is stored in the Body struct.
Therefore, we enable serialization for fields within this struct. To en-
able this functionality during compilation, we implement a custom
MIR pass that triggers when a specific compiler flag is set. This pass
runs after the full MIR is generated and ready for analysis passes.
It utilizes the Body struct, serializes its contents to JSON format
using Serde, and writes the output to a file (rustc++ generates one
JSON log per MIR body/function). This approach allows users to
enable or disable MIR serialization on demand without disrupting
the normal compilation pipeline.

5 EVALUATION
Correctness discussion. In the rustc pipeline, the compiler decom-
poses source code into an Abstract Syntax Tree (AST), which is then
lowered to the High-level Intermediate Representation (HIR) and
subsequently to other representations. During each lowering phase,
new instructions are generated while older ones are discarded. To
maintain the origin information of instructions across these inter-
mediate representations, rustc uses SourceInfo struct [27], which
holds fields such as span and scope. These fields provide informa-
tion about the location of each IR instruction in the source code, as
explained in Section 4.

By leveraging the span field, we can reliably correlate unsafe
source code instructions from the AST with their corresponding
MIR instructions. To propagate this information accurately to LLVM-
IR, we extend the SourceInfo struct to include a safety flag that indi-
cates whether a given MIR instruction originates from unsafe code.
This modification allows us to focus changes on the Builder compo-
nent, which is responsible for convertingMIR instructions to LLVM-
IR. The safety flag ensures that metadata are added only when the
original MIR instruction is unsafe. Additionally, the generated log
file records file names and source code lines for unsafe instruc-
tions, enabling precise identification of these instructions during
post-compilation analysis. Throughout the compilation pipeline,
utilizing the span field maintains the relationship between inter-
mediate representation (IR) instructions and the Rust source code,
facilitating easy correctness verification of metadata propagation.

Sample MIR pass. In this subsection, we demonstrate an exam-
ple MIR pass, in this case, a statistical analysis pass, that leverages
unsafe metadata added to MIR. This is feasible because rustc++
identifies and propagates unsafety metadata before any other MIR
optimization passes, ensuring availability of this information for
all subsequent passes. We integrate this test pass into the rustc++

EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands Antonis Louka, Georgios Portokalidis, and Elias Athanasopoulos

pipeline, executing it before any compiler optimizations. To illus-
trate this process, we provide a toy example program compiled with
rustc++, shown in Listing 5.
1 fn main() {
2 let mut str = String ::from(" deadbeef ");
3 println !("{}" , str);
4 let ptr = str.as_mut_ptr ();
5 let _str1 = String ::from(" deadbeef ");
6
7 unsafe {
8 *ptr = *ptr + 10;
9 }
10 let _str2 = String ::from(" deadbeef ");
11
12 println !("{}" , str);
13 let _str3 = String ::from(" deadbeef ");
14
15 unsafe {
16 foo(&mut str);
17 }
18 let _str4 = String ::from(" deadbeef ");
19 }

Listing 5: Testing unsafe metadata: Main function of toy
example compiled with rustc++

We present the results of the MIR pass, identifying unsafe MIR
instructions using the unsafety flag set by rustc++. This pass also
correlates unsafe MIR instructions with the corresponding source
code lines that generated them. The output of this process is shown
in Listing 6.
1 Unsafe: StorageLive(_19) @ line 7
2 Unsafe: StorageLive(_20) @ line 8
3 Unsafe: _20 = copy (*_14) @ line 8
4 Unsafe: _21 = AddWithOverflow(copy _20 , const 10_u8) @ line 8
5 ...
6 Unsafe: _41 = &mut _1 @ line 16
7 Unsafe: _40 = &mut (*_41) @ line 16
8 Unsafe: AssignOnReturn{return_ :[bb14],cleanup:Some(bb22),place

:Call(_39)} @ line 16
9 Unsafe: _38 = &mut (*_39) @ line 16
10 ...
11 Unsafe: StorageDead(_37) @ line 16
12 Unsafe: _36 = const () @ line 15
13 Unsafe: StorageDead(_36) @ line 17

Listing 6: Partial result of simple MIR pass: Locating unsafe
MIR and their source code lines.

Sample LLVM pass. We demonstrate the usability of LLVM-IR
metadata by implementing a simple LLVM pass. Using rustc++, we
compile the toy example from Listing 5 and generate the textual
representation of LLVM-IR, as shown in Listing 3. This LLVM pass
loads the .ll file, iterates through functions, and prints unsafe LLVM-
IR instructions located in different basic blocks (BBLs) based on
the metadata added by rustc++. The pass is executed using the
LLVM optimizer and can identify LLVM-IR instructions marked
with unsafe_instr metadata. The results of this custom LLVM pass
are presented in Listing 7.
1 Function: _ZN7testing4main17h989262e97a945127E
2 Unsafe: %_13 = load i8, ptr %_10.0, align 1, !unsafe_instr !4
3 Unsafe: %_14.0 = extractvalue {i8, i1} %8, 0, !unsafe_instr !4
4 Unsafe: %_14.1 = extractvalue {i8, i1} %8, 1, !unsafe_instr !4
5 ...
6 Unsafe: br i1 %_14.1,label %panic ,label %bb8 , !unsafe_instr !4
7 Unsafe: invoke void @_ZN7testing3foo17h5809e028abd2d08cE(ptr

align 1 %_25.0, i64 %_25.1)to label %bb15 unwind label %
cleanup3 , !unsafe_instr !7

8 ...

Listing 7: Partial result of LLVM-IR pass run on textual
representation with unsafety metadata emmited by rustc++.

6 RELATEDWORK
Xu et al. [36] present RPG, a fuzzing tool that enhances fuzzing
for Rust. It generates fuzz targets for Rust libraries using a pool-
based search using input sequences that prioritize unsafe code
paths to uncover bugs related to unsafe code interactions. Bae et
al. [2] introduce Rudra, a static analysis tool that detects memory
safety issues by analyzing specific code patterns which involve
unsafe code blocks leading to vulnerabilities. Kirth et al. [7] address
memory isolation between safe and unsafe code, particularly in
mixed-language environments. PKRU-safe provides fine-grained
heap isolation by leveraging Intel Memory Protection Keys (MPK)
and uses profiling-based data-flow tracking to partition memory.
Multi-Level Intermediate Representation (MLIR) [9, 15, 16], is a
sub-project of the LLVM project; MLIR is developed by Google and
aims to help in software fragmentation, and the creation of domain
specific compilers. Even though MLIR is still new it is a powerful
concept allowing creation and addition of unique intermediate
representations in the LLVM framework pipeline, for optimization
and analysis passes. MLIR can potentially provide a way for creating
compiler intermediate representations and safety analysis routines
for currently unsafe languages like C/C++.

7 FUTUREWORK
rustc++ currently incorporates only unsafety metadata. However,
based on bugs found in the Rust Advisory Database and insights
from Rust research analysis tools, we argue that these works could
benefit from including additional information, such as raw pointer
metadata. Raw pointers are a feature of Rust that allows the creation
of C-like pointers. While raw pointers can be declared within safe
Rust code, they cannot be dereferenced or used outside of an unsafe
block. Recent bugs have highlighted that raw pointer variables are
a common source of use-after-free errors in Rust, especially since
they can be cast back into safe Rust references (see Listing 1).

MIR Deserialization. While serialization provides a valuable way
to export MIR for external use, our long-term objective is to enable
deserialization of MIR back into the Rust compiler pipeline. This
task is inherently more complex, as it requires recreating the full
MIR structure from JSON and reintegrating it into the compiler
pipeline. This would enable MIR to be a truly language-agnostic IR,
allowing it to incorporate Rust’s safety mechanisms and passes to
inherently unsafe programming languages like C/C++.

8 CONCLUSIONS
In this paper, we introduced rustc++, a Rust compiler extension
curated for analysis purposes. We presented MIR++ an enhanced
version of Rust’s most important IR, that maintains and propagates
unsafety information. This metadata is passed forward through the
compilation pipeline, including both LLVM-IR and the final binary,
ensuring information is preserved for analysis. Through rustc++we
made the first steps in transforming MIR++ to a language-agnostic
IR, with goal to offer a foundation for advanced analysis, opti-
mizations tools, and optimal cross-language hardening techniques
integration.

rustc++: Facilitating Advanced Analysis of Rust Code EuroSec’25, March 30-April 3, 2025, Rotterdam, Netherlands

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
This work was supported by the European Union’s Digital Europe
Programme (CyberSecPro, Grant No. 101083594) and Horizon Eu-
rope Programme (SecOPERA, Grant No. 101070599). The views
expressed in this paper are solely those of the authors and not of
the European Commission or project partners.

REFERENCES
[1] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexan-

der J. Summers. 2020. How do programmers use unsafe rust? Proc. ACM Program.
Lang. 4, OOPSLA, Article 136 (Nov. 2020), 27 pages. https://doi.org/10.1145/
3428204

[2] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. 2021.
Rudra: FindingMemory Safety Bugs in Rust at the Ecosystem Scale. In Proceedings
of the ACM SIGOPS 28th Symposium onOperating Systems Principles (Virtual Event,
Germany) (SOSP ’21). Association for Computing Machinery, New York, NY, USA,
84–99. https://doi.org/10.1145/3477132.3483570

[3] Inyoung Bang, Martin Kayondo, HyunGon Moon, and Yunheung Paek. 2023.
TRust: A Compilation Framework for In-process Isolation to Protect Safe Rust
against Untrusted Code. In 32nd USENIX Security Symposium (USENIX Security
23). USENIX Association, Anaheim, CA, 6947–6964. https://www.usenix.org/
conference/usenixsecurity23/presentation/bang

[4] Rust Fuzz Book. 2025. Fuzz Testing of Rust code. https://rust-fuzz.github.io/
book/cargo-fuzz.html

[5] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. 2023. SafeDrop: De-
tecting Memory Deallocation Bugs of Rust Programs via Static Data-flow Anal-
ysis. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 82 (May 2023), 21 pages.
https://doi.org/10.1145/3542948

[6] Rust Secure Code Working Group. 2024. RustSec Advisory Database. https:
//rustsec.org/

[7] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. 2022. PKRU-safe:
automatically locking down the heap between safe and unsafe languages. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys ’22). Association for Computing Machinery, New York, NY, USA,
132–148. https://doi.org/10.1145/3492321.3519582

[8] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, USA, 75.

[9] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[10] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker:
Detecting Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New
York, NY, USA, 2183–2196. https://doi.org/10.1145/3460120.3484541

[11] Antonis Louka, Antreas Dionysiou, and Elias Athanasopoulos. 2024. Validating
Memory Safety in Rust Binaries. In Proceedings of the 17th European Workshop
on Systems Security (Athens, Greece) (EuroSec ’24). Association for Computing
Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3642974.3652281

[12] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-language
attacks. https://www.ndss-symposium.org/wp-content/uploads/2022-78-paper.
pdf

[13] Jiun Min, Dongyeon Yu, Seongyun Jeong, Dokyung Song, and Yuseok Jeon. 2024.
ERASan: Efficient Rust Address Sanitizer. In 2024 IEEE Symposium on Security
and Privacy (SP). 4053–4068. https://doi.org/10.1109/SP54263.2024.00258

[14] Michalis Papaevripides and Elias Athanasopoulos. 2021. Exploiting Mixed Bi-
naries. ACM Trans. Priv. Secur. 24, 2, Article 7 (jan 2021), 29 pages. https:
//doi.org/10.1145/3418898

[15] LLVM project. 2024. MLIR: Multi-Level Intermediate Representation. https:
//mlir.llvm.org/

[16] LLVM project. 2024. MLIR: Multi-Level Intermediate Representation. https:
//github.com/llvm/llvm-project/tree/main/mlir

[17] rust-borrow checker. 2021. Rust Compiler Development Guide. https://rustc-
dev-guide.rust-lang.org/borrow_check.html.

[18] Rust-Lang. 2021. Rust Driver. https://rustc-dev-guide.rust-lang.org/rustc-
driver/intro.html#rustc_driver

[19] Rust-Lang. 2021. Rust HIR. https://rustc-dev-guide.rust-lang.org/hir.html

[20] Rust-Lang. 2021. Rust Interface. https://rustc-dev-guide.rust-lang.org/rustc-
driver/intro.html#rustc_interface

[21] Rust-Lang. 2021. Rust MIR. https://rustc-dev-guide.rust-lang.org/mir/index.html
[22] Rust-Lang. 2021. Rust THIR. https://rustc-dev-guide.rust-lang.org/thir.html
[23] Rust-Lang. 2024. Miri: an Undefined Behavior tool for Rust (MIR interpreter).

https://github.com/rust-lang/miri
[24] Rust-Lang. 2024. The Rust Programming Language: Unsafe Superpowers. https:

//doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
[25] Rust-Lang. 2025. Rust Compiler Agnostic Backend. https://rustc-dev-guide.rust-

lang.org/backend/backend-agnostic.html
[26] Rust-Lang. 2025. Rust Compiler LLVM Backend. https://rustc-dev-guide.rust-

lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
[27] Rust-Lang. 2025. Rust Compiler SourceInfo struct. https://rustc-dev-guide.rust-

lang.org/hir.html
[28] Rust-Lang. 2025. Rust Compiler Span struct. https://doc.rust-lang.org/nightly/

nightly-rustc/rustc_span/span_encoding/struct.Span.html
[29] Rust-Lang. 2025. Rust Compiler Statement struct. https://doc.rust-lang.org/

nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
[30] Rust-Lang. 2025. Rust Compiler StatementKind struct. https://doc.rust-lang.

org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html
[31] Rust-Lang. 2025. Rust Compiler Terminator struct. https://doc.rust-lang.org/

nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
[32] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston,
MA, 309–318. https://www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany

[33] Speykious. 2023. Blazingly fast memory vulnerabilities, written in safe rust.
https://github.com/Speykious/cve-rs.

[34] Rust Foundation Team. 2024. Unsafe Rust in the Wild: Notes on the Current
State of Unsafe Rust. https://rustfoundation.org/media/unsafe-rust-in-the-wild-
notes-on-the-current-state-of-unsafe-rust/

[35] The Rust Project Developers. 2022. The Rust Programming Language: References
and Borrowing. Accessed on November 20, 2023.

[36] Zhiwu Xu, Bohao Wu, Cheng Wen, Bin Zhang, Shengchao Qin, and Mengda He.
2024. RPG: Rust Library Fuzzing with Pool-based Fuzz Target Generation and
Generic Support. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing
Machinery, New York, NY, USA, Article 124, 13 pages. https://doi.org/10.1145/
3597503.3639102

https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3477132.3483570
https://www.usenix.org/conference/usenixsecurity23/presentation/bang
https://www.usenix.org/conference/usenixsecurity23/presentation/bang
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://doi.org/10.1145/3542948
https://rustsec.org/
https://rustsec.org/
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3642974.3652281
https://www.ndss-symposium.org/wp-content/uploads/2022-78-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-78-paper.pdf
https://doi.org/10.1109/SP54263.2024.00258
https://doi.org/10.1145/3418898
https://doi.org/10.1145/3418898
https://mlir.llvm.org/
https://mlir.llvm.org/
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/llvm/llvm-project/tree/main/mlir
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/rustc-driver/intro.html#rustc_driver
https://rustc-dev-guide.rust-lang.org/rustc-driver/intro.html#rustc_driver
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/rustc-driver/intro.html#rustc_interface
https://rustc-dev-guide.rust-lang.org/rustc-driver/intro.html#rustc_interface
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/thir.html
https://github.com/rust-lang/miri
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/backend/backend-agnostic.html#refactoring-of-rustc_codegen_llvm
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/span_encoding/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_span/span_encoding/struct.Span.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Statement.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/enum.StatementKind.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/terminator/struct.Terminator.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://github.com/Speykious/cve-rs
https://rustfoundation.org/media/unsafe-rust-in-the-wild-notes-on-the-current-state-of-unsafe-rust/
https://rustfoundation.org/media/unsafe-rust-in-the-wild-notes-on-the-current-state-of-unsafe-rust/
https://doi.org/10.1145/3597503.3639102
https://doi.org/10.1145/3597503.3639102

	Abstract
	1 Introduction
	2 Background
	3 Challenges for Rust memory safety
	4 implementation
	4.1 Metadata propagation
	4.2 MIR serialization

	5 Evaluation
	6 Related Work
	7 Future Work
	8 conclusions
	Acknowledgments
	References

