
Been Here Already? Detecting Synchronized Browsers in the Wild

Pantelina Ioannou
University of Cyprus

Nicosia, Cyprus
ioannou.pantelina@ucy.ac.cy

Elias Athanasopoulos
University of Cyprus

Nicosia, Cyprus
athanasopoulos.elias@ucy.ac.cy

Abstract—Browsers have become the most popular and used
platform for accessing the web. Their wide and exclusive
usage as a medium for doing several tasks in the Internet
comes with serious security and privacy risks for the users.
For example, it has been shown that web sites can employ
browser fingerprinting and cross-device tracking techniques
to de-anonymizing or profiling a user’s browser. On the
other hand, browsers become richer in functionality by the
years. One very convenient feature, introduced recently and
being available to most major web browsers, is synchronizing
the browsers on different devices. Browser synchronization
allows users to share settings and preferences of their
browser running on multiple devices (e.g., on their laptop
and smartphone).

In this paper, we are the first to deliver a framework
that can be used by web site operators to detect if different
HTTP requests, issued from different browsers, are actually
requests performed by the same user through multiple
synchronized browsers running on different devices. For de-
tecting this, we reconstruct different sessions based on their
requested resources, timestamps and cookies. In addition,
we evaluate our methodology by conducting a user study
that collects anonymized HTTP requests from several users,
and we prove that the detection of synchronized sessions is
possible with a success rate higher than 75%. Our results
indicate a serious implication to users’ privacy that has not
been studied before.

Index Terms—browser fingerprinting, browser synchroniza-
tion

1. Introduction

Browsers are the de facto platforms for accessing the
web. Today, users rely on web browsers to access rich
services, such as for email, document editing and social
interaction. Since web browsers stand as a medium for
doing several tasks in the Internet, they have now become
a major target for breaching a user’s security and privacy.

Users may opt in to access web sites anonymously,
without issuing an account for specific web sites. For
instance, several news portals or blogs can be viewed
without authenticating first. Unfortunately, it has been
shown that web sites can employ browser-fingerprinting
capabilities and de-anonymize a user, primarily by dis-
tinguishing their browser among the many browsers out
there [1, 2, 3, 4, 5, 6, 7]. Practically, this means that
a user that accesses a web site several times can be

profiled, even when they are not registered with the web
site and, thus, be served with personalized content, such
as targeted advertisements. In the worst case, the user’s
profile may be correlated with the eponymous profile that
exists in services that have the user registered. In such
cases, anonymous reading of content related to certain
political beliefs or lifestyle choices can be entirely de-
anonymized and become public.

However, it is crucial to observe that browser finger-
printing is primarily based on distinguishing web browsers
within each other and not users. For associating a browser
to a user, the fingerprinting web site must collude with
another web site that has the user registered with. But
users today rarely rely on using a single browser, since
they operate on multiple devices, such as laptops, smart-
phones, tablets or other smart devices that do access the
web.

Tracking the user across multiple devices is known as
cross-device tracking [8, 9, 10, 11, 12, 13, 14]. To the
best of our knowledge, cross-device tracking so far can
use several signals (e.g., Bluetooth) but not browsers. On
the other hand, one very convenient feature available in all
major web browsers, today, is synchronizing the browsers
of different devices. For example, a user can browse the
news in the morning using their laptop at the office, then
start reading an article, but resume reading after several
hours from a different synchronized web browser, let us
say from their tablet using their home Internet connection.
The extent to which a web site can identify the (anony-
mous) sessions that belong to synchronized browsers of
the same user, for eventually cross-tracking the user’s
browser across different devices, is so far unexplored.

The browser synchronization feature is currently avail-
able on Google Chrome, Mozilla Firefox, Microsoft Edge,
and Opera. The browsers mentioned cover the 75% of
the browser usage worldwide [15]. At the moment, there
are no official statistics regarding the usage of browser
synchronization. However, it is a feature available in all
major browser platforms and, most importantly, a feature
that has unclear privacy guarantees.

Generalizing typical browser fingerprinting to include
synchronized web browsers has significant implications
for the user’s privacy. First, a web site, which offers
content without requiring user authentication, can tell that
a user operates specific multiple devices. This may include
relatively stationary devices, such as laptops or desktops
in a corporate environment, with other relatively transient
devices, such as smartphones. Here, the correlated infor-
mation may include device and network characteristics.

913

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Pantelina Ioannou. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00058

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
58

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

For example, a web site can tell that a user employed
by a specific company owns a smartphone of a specific
brand and lives in a specific area. Second, typical browser
fingerprinting can be further augmented with the addi-
tional collected information for more aggressive targeted
advertisement. As an example, consider a news page that
can discover sensitive information about a user, such as
religious or political beliefs, based on articles they visit.
This information may be used in political campaigns, to
manipulate the public opinion.

Our framework could be categorized as a cross-device
fingerprinting technique. The core characteristic of cross-
device tracking is the detection of the same user in mul-
tiple devices. However, the major contribution is that, in
contrast to other cross-device tracking works [8, 9, 10, 11,
12, 13, 14], we use the browser signals emitted by each
synchronized device. For performing the actual tracking,
we reconstruct different sessions based on their requested
resources and timestamps. We leverage the fact that some
web resources cannot be accessed directly by the user,
since they are not landing pages. Such resources can be
only accessed through several intermediate requests. As an
example, consider a web article that is no longer visible in
the front page of the main web site, but is archived under
a specific theme or category. This article needs a series
of steps in order to be accessed again, but if accessed
directly it may be a signal that the request comes from a
synchronized web browser.

Evaluating our methodology is challenging, since we
do not have access to existing web sites. For this, we
incorporate a novel approach for collecting all web traffic
issued by several users that participate in a controlled
environment. 1 The traffic is collected anonymously and
contains all web accesses from each user that participates
in the study. The collected traffic additionally contains
synchronization requests to the browser platform used, in
our case to Mozilla Firefox. Therefore, we are able to
collect the ground truth, i.e., which of the users’ browsers
are actually synchronized and which are not, and then test
the session reconstructions from our methodology. 2

The total number of requests we collect in this study
is 138,962. This amount of data can be compared to the
study performed by Laperdix et al. [16] for measuring the
effectiveness of tracking with browser fingerprinting. The
authors collected 118,934 fingerprints, a sample which is
very close to the sample we use in this study. Moreover,
the study mentioned above is one of the three large-
scale studies performed regarding browser fingerprinting
currently available in the literature [2].

The results of our research verify our assumption.
From the 138,962 collected data our algorithm detects
76,6% of the user sessions correctly. This means that
the 106,420 of sessions are flagged either synced or not
synced correctly by the algorithm. The results show that
the detection of synced browsers is possible with a high
success rate. Moreover, we show that such fingeprinting
can be practically realized easily by any web site operator
without leveraging active injection of client-side code in
the browser’s environment. This is a serious implication

1. We have received clearance for performing the study by our national
Ethics office, and it covers all the aspects of our study.

2. A fully functional prototype of the plugin’s code is available on
Bitbucket (https://bitbucket.org/srecgrp/synced_browsers_public/)

to users’ privacy and, to the best of our knowledge, we
are the first to quantify this.

This paper has the following contributions:

• We study the underlying web communication for
synchronized web browsers of a popular platform,
namely Mozilla Firefox. We can therefore identify
synchronization points by detecting specific web
requests issued by a web browser towards Mozilla.

• We realize an algorithm that can be used by web
operators for correlating different web requests
and connecting them to a specific user that controls
multiple devices synchronized by a specific web
platform.

• We conduct a user study and we assess the ef-
fectiveness of our approach. The user study is
feasible, since we can construct the ground truth
(the synchronized web browsers) by collecting
the synchronization points issued by the users’
browsers. This information is not available to web
operators, but we can use it for evaluating our
results. Our results suggest that the detection of
synchronized browsers, is possible with a success
rate higher than 75%.

2. Background

Device fingerprinting is the identification technique of
collecting a list of device features, on several layers of
the system, for building a unique identifier for a device.
Browser fingerprinting is a similar process, but collecting
the information through a web browser, aiming to build
a fingerprint of the browser [2]. A browser fingerprint
could consist of hardware characteristics, operating system
features, and information about the browser and its con-
figuration. The features can either be collected via scripts
written in JavaScript or through the passive collection of
HTTP headers and network identifiers [2].

Browser fingerprinting acts transparently and, in prin-
ciple, can produce a state between a server and a web
browser similar to the one imposed by cookies. Cookies
are the de facto mechanism for facilitating state in HTTP,
which is essentially a stateless protocol, by having the
server computing a unique token that is attached in all
further communication with the visiting client. However,
the main difference between cookies and browser fin-
gerprints is that cookies are directly stored inside the
browser, whereas browser fingerprinting is a computation
performed by the server without the need of cookies.
Consequently, browser fingerprinting is increasingly used
by companies and organizations, aiming to raise their
profits, by presenting clients, even when their cookies are
deleted, with personalized content.

2.1. Web browser synchronization

Browser synchronization is a cloud service that is
provided by most web browsers, such as Google Chrome,
Mozilla Firefox, Microsoft Edge and Opera. When the
users synchronize their account, they can share settings
and data across multiple devices [17, 18]. Some of the
items which can be synchronized are: bookmarks, add-
ons and extensions, open tabs, web feeds, credit cards,

914

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

and payment methods. The browser synchronization is
typically used to maintain a consistent browser setup on
multiple devices. The core mechanism behind browser
synchronization is that browsers operating in different
devices send occasionally probes to the cloud service (e.g.,
to a Mozilla service) for receiving back all state shared by
other browsers operated by the same user. The user needs
to operate their browsers while being authenticated with
the cloud part. Browser synchronization offers the users
with convenience; a resource that is originally opened
by one device can be further enabled to other devices.
However, browser synchronization can be potentially used
by servers to group several different web browsers to a
single one, as we explore later in this paper.

3. Detecting Synchronized Browsers

In this section, we describe the approach we follow
for reconstructing synchronized web sessions that belong
to a single user by a server that receives web traffic from
several users. First, we define the threat model and then,
we provide an overview of the experimental methodology
we follow for validating the possibility of such an attack.
Afterwards, we discuss the implementation of the Mozilla
extension, which facilitates the collection of needed data
for the attack’s evaluation.

3.1. Threat model

We assume that the server offers no mandatory au-
thentication mechanism, thus users cannot be identified
through their logged-in account shared by multiple de-
vices. Typical web applications that follow this model are
news portals and e-commerce sites that can be offered
through generic guest accounts. However, it is not uncom-
mon for other web applications to support authentication
as an optional feature. The server may inject cookies
in the web browser, however, these will be different
depending on the device the web browser runs. Such a
server, that is willing to identify a user’s synchronized
browsers, acts as an honest-but-curious (HBC) adversary.
An HBC adversary is defined as a legitimate participant
in a communication protocol who does not deviate from
the defined protocol but may attempt to learn additional, if
possible, information from legitimately received messages
[19].

In our case, the adversary is a web site operator that
collects all incoming requests and then performs an analy-
sis on them. The goal of the analysis is to potentially learn
more about the users, and, particularly, which established
web sessions can be grouped to a single synchronized one.
More specifically, the web site operator collects retrieved
request attributes, such as the URL, timestamp, IP ad-
dress, user agent, and cookies, and then combines them
to reveal which of them are not entirely independent, but
are synchronized and, therefore, belong to the same user.
This result can be further used for injecting personalized
ad content or can be correlated with other web fingerprint-
ing techniques for further de-anonymizing the user. Note
that someone can collect attributes from the browser by
injecting javascript programs. However, in our study we
focus on the attributes that can be collected passively by
the web site in the least intrusive way. Thus, the attacker

in our threat model is passively collecting attributes that
are available in the received web traffic.

3.2. Experimental Methodology

The experimental methodology for validating how
synchronized browsers can be fingerprinted is depicted
in Figure 1. Our first goal is to deploy a technique
for collecting several different user sessions, but without
revealing any personal or sensitive data. An ideal option
for this task is the design and implementation of a browser
extension, that collects web traffic generated from users
that we know, in advance, if they use synchronized web
browsers. We, therefore, implement the browser extension
as a Mozilla plug-in, which makes our method compat-
ible with Firefox browsers only. Mozilla Firefox is a
popular browser platform, which has been used by 362
million users worldwide (2021) [20], and owns the 11,2%
of the browsers usage. It also has the functionality of
synchronized browsers, and therefore it is aligned with
our objectives. Realizing similar extensions for other web
platforms is also possible.

As shown in Figure 1, for collecting all data, users
need to install the extension to their Firefox browsers,
which may run on different devices. Moreover, users have
to provide the plug-in, through a pop-up, with their email
address and whether they are synced or not. This data is
needed in order to compute the ground truth, i.e., which
of the collected sessions are indeed synchronized and they
performed by the same user.

Users that install our extension can continue their
regular digital routine by visiting any web sites they
want. The extension captures all of their web sessions,
anonymously, including synchronization requests towards
Mozilla, and isolates the attributes we want. Then, the
extension constructs a POST request towards a server we
control, and adds all the attributes to its body. We can
therefore analyse all the collected data for (i) generating
the ground truth (how many web sessions are indeed
synchronized), (ii) reconstructing all sessions, without the
ground truth, using our algorithm, and (iii) comparing the
ground truth with our reconstructions.

3.3. Plug-in Design and Implementation

Our browser extension follows the general anatomy of
MDN, as reported in [21]. A browser extension must have
a manifest.json file, which contains basic metadata for
the browser, and declares how the plug-in should behave
when added to the user’s browser. It contains information
such as plug-in description, name, version, the permissions
it requires, and pointers to other files. Then, based on
what the manifest file contains, we include other files,
such as the background page, the browser-action, the page
action, and content scripts [21]. For the operation of our
extension, we only need a background and a browser-
action script. The anatomy of our extension is shown in
Figure 2.

The browser extension performs long-term oper-
ations, which are included in the background file
[21]. The background script of our extension uses the
onBeforeRequest function [22], to log the URLs.
The background script is loaded as soon as the extension

915

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

Plug-in (installed on browser)

URL

User Agent

IP

Date/Time
Cookies

Synced flag

Hashed email

Collects:

POST

Browser extension

Data Collection

Install extension to Firefox

Synced

Not Synced

Visit any
������

���� � �����	

Not Synced

Synced

�����
 ������

������� �����������������

�������������������

 �!�����

"#�$!#� ��#

���%���

&��#�����"�#��'���
���(���#'(�
'��#��������

&#�') �#'�* +
���(���#'(��)��������

��$��#��� �"

&��#��� &#�') �#'�*

Figure 1: Data collection flow. Our experimental methodology is based on three stages. We first design and implement a
browser extension which collects four features (URL, user-agent, date/time, IP), the user’s email and the synchronization
status of the browser. The plug-in sends all collected data to a server. As soon as we have the data, we continue to the
analysis phase, which consists of three steps. The generation of the ground truth is done based on the synced flag and
the (hashed) email addresses. Additionally, we can analyse the collected requests, based on the URL and the timestamps,
in order to reconstruct synchronized sessions. Finally, we compare the ground truth and the reconstructed data.

Browser extension

manifest.json

Background page Browser action

popup.html popup.jsbackground.js

Figure 2: Extension’s anatomy. The figure above de-
scribes the anatomy of the browser extension we devel-
oped. The browser plug-in we produced consists of a
manifest.json file, a background script, and the files that
realize the pop-up window necessary for the email input
to the plugin.

is added to the browser, and stays enabled until the
user uninstalls the extension. The third component of our
extension is the browser action script that contains the
popup window. The pop-up appears when the user loads
the extension to the browser, and it adds an icon in the
right corner of the menu bar.

3.4. Data Collection

We collect the data through the Mozilla browser exten-
sion. When the users add the extension to their browser,
they have to declare if they are synced/unsynced from
a button available in the extension. Then, the exten-
sion starts logging the users’ requests, and collects the
necessary attributes, namely URL, date/time, IP address,
User Agent, and Cookies. Users visit any web site they
want, continuing their digital routine, for a certain period
of time. Then, the users reverse the synced/not synced

option and repeat the same steps, as described above. For
instance, if the user is logged in their Mozilla account at
the first step, they have to log out, choose the "Not synced"
button on the extension’s pop-up, and start visiting web
sites again. Finally, all users are advised to repeat the
whole procedure in a different device. The data collection
phase is completed when the user uninstalls the plug-in
from the browser. An example of a collected request, in
raw format, is shown in Figure 3.

Each collected request consists of a header and a body
section. The body section is the one we utilize in the
analysis phase. As shown in Figure 3, the body section
contains the attributes we collect through the plugin: URL,
Date, User agent, IP address, and Cookies, which are used
in the re-construction algorithm. In the example, we do not
include the user_id and some parts of the cookies field, for
privacy reasons, to maintain participants’ anonymity. The
users provide the plugin with their email address, which
we cryptographically hash for constructing the user_id.
The user_id is subsequently used in the ground truth
generation. Furthermore, we log the synced flag which
declares whether the user was logged-in to the Mozilla
account when performing the specific request.

Although users are not restricted to what web sites can
visit, our approach is expected to work with high accuracy
with web sites that have dynamic content. For example,
news and other similar web sites, where target pages can
be visited by following a series of links, which can be
later omitted when a synchronized request is re-visiting
the final target. We elaborate more on this, in the next
section.

916

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

--SECTION-A--
[17/May/2022:18:42:29 +0200]
Yg569fHFKdNfGpjAeQSbFAAAAAA
10.16.13.119 46366 10.16.20.20 80

--SECTION-B--
POST / HTTP/1.1
Host: *********
User-Agent: Mozilla/5.0
(X11; Linux x86_64; rv:78.0)
Gecko/20100101 Firefox/78.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type:
application/x-www-form-urlencoded
Content-Length: 674
Connection: keep-alive

--SECTION-C--
user_id=*****
& url=http://cnn.com/
& date=17/5/2022, 6:42:29 PM
& userAgent=Mozilla/5.0
(X11; Linux x86_64; rv:78.0)
Gecko/20100101 Firefox/78.0
& ip=194.42.16.139
& synced=false

Cookie Domain: .cnn.com
Cookie Name: countryCode
Cookie Value: CY Persistent: true
Cookie Domain: .cnn.com
Cookie Name: stateCode
Cookie Value: 02 Persistent: true
Cookie Domain: .cnn.com
Cookie Name: geoData
Cookie Value: ****|02|3010|****|EU|20
Persistent: true
--SECTION-E--

--SECTION-Z--

Figure 3: Example of a collected HTTP request. The
figure above shows an example of a collected request in
our dataset. The HTTP request contains the header and the
body parts. For our methodology we utilize the body part
(Section B) of each request, that contains the attributes
gathered through the browser extension.

4. Analysis

Once we collect the data we can analyse them for (i)
generating the ground truth (how many web sessions are
indeed synchronized), (ii) reconstruct all sessions, without
the ground truth, using our algorithm, and (iii) compare
the ground truth with our reconstructions. The rest of this
section describes each of the analysis phases.

4.1. Ground truth and pre-processing

We analyze all the collected HTTP requests, which
include also synchronization points, in order to derive
the ground truth. Synchronization points are identified
through the synced flag that is provided by the users in
the data-collection phase. Users declare specifically when
their account is synchronized and when is not. Therefore,
the ground-truth set includes all collected HTTP requests,
which are also marked as synced or non-synced. We can
use the ground-truth dataset in order to further evaluate
the algorithm that attempts to infer synchronized ses-
sions without having access to any of the synchronization
points. An example of an anonymized collected HTTP re-
quest is shown in Figure 3 and is described in Section 3.4.

A mandatory task in computing the ground truth is
removing requests that can introduce types of noise in the
final dataset. A prime example of such noise is requests
that are not collected through the plug-in and constitute
traffic to our web server. These requests can be Internet
scans, crawlers or other random traffic received by our
web server, which is public. In our processing, we omit
all received requests that do not include the user_id
field, which is attached to every request recorded by our
plug-in.

Another type of requests that we exclude from the
ground truth is one-click requests. One-click requests ap-
pear when a user visits a web site only once. Our goal
is to infer synced requests that come from, at least, two
different devices. Since one-click requests, even when
issued by a synced web browser, cannot be used for further
inferring if they are paired with requests issued by another
device, they are removed from the ground truth.

We filter out all noise and derive the ground-truth
table, which consists of a column that indicates whether
each request is synchronized or not. If the request is
synced, we add a list that includes all the requests that
the corresponding session is synced to. If the session is
not synced, the field remains null. Finally, we derive a
new data set, that does not contain the user_id and the
synced flag for each request. We use this dataset in the
reconstruction phase.

4.2. Reconstruction of user sessions

We reconstruct synchronized web sessions by follow-
ing an intuitive algorithm, which we depict in Figure 4.
The diagram reflects how different sessions are correlated
using our approach over time. First, a user is visiting a
web site at time ti, and from the landing page of the web
site they are likely to generate a series of other requests, in
order to access Utarget. In other words, Utagret is accessed
through a URL path, U1 to U3. For the example shown in
Figure 4, the user is reading a specific article from a news
web site. The site can be a typical news portal, like CNN,
which can be browsed by anyone without authentication.
Nevertheless, many other web sites that can be accessed
without authentication can be also covered by our algo-
rithm. To signify the importance of the URL path, we use
the term depth, which in this particular example is equal
to three (3).

Now, we can assume that the user saves the article,
by utilizing the browser synchronization feature, which

917

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Detecting Synchronized Sessions algorithm

Result: Reconstructed synced flag for all sessions.
1 sorted_list = sort_requests_based_on_URL();
2 keyf = x[URL];
3 grouped_by_url=[];
4 for keyf , group in groupby(requests_list, keyf) do
5 grouped_by_url. append(list(group));
6 end
7 same_timestamps=[];
8 keyt=x[timestamp];
9 for keyt, group in groupby(requests_list, keyt) do

10 same_timestamps. append(list(group));
11 end
12 foreach i ∈ grouped_by_url do
13 flag=False

foreach j ∈ same_timestamps do
14 if i.exists(same_timestamps[j]) then
15 i.depth=len(same_timestamps[j])

flag=True
16 end
17 end
18 if flag==False then
19 i.depth=1
20 end
21 end
22 foreach list ∈ grouped_by_url do
23 timestamps=[]

foreach request ∈ list do
24 timestamps.append (request.datetime)
25 end
26 different_timestamps = find_different_timestamps(list,timestamps)
27 end
28 similar_cookies=cookies_similarity(different_timestamps)
29 possible_synced = []
30 foreach i ∈ different_timestamps do
31 foreach j ∈ similar_cookies[i] do
32 if i.cookies in similar_cookies then
33 possible_synced.append(different_timestamps[i])
34 end
35 end
36 end
37 final_result=[]
38 foreach request ∈ possible_sync do
39 if request.URL.attributes >= 1 then
40 final_result.append(request)
41 end
42 end
43 Function cookies_similarity(different_timestamps):
44 individual_cookies = []
45 foreach row ∈ different_timestamps do
46 foreach request ∈ row do
47 individual_cookies.append(different_timestamps[row][request].cookies);
48 end
49 similar_cookies = []
50 foreach i ∈ range(len(individual_cookies) do
51 foreach j ∈ range(i+ 1, len(individual_cookies) do
52 if (individual_cookies[i]==individual_cookies[j]) then
53 similar_cookies.append(individual_cookies[i],individual_cookies[j])
54 end
55 else if (compare_strings(individual_cookies[i],individual_cookies[j])>=85%) then
56 similar_cookies.append(individual_cookies[i],individual_cookies[j])
57 end
58 end
59 end
60 end
61 return similar_cookies;
62 endFunction

918

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Session reconstruction. The timeline of events represents the intuition of our approach. First, a device (A)
is visiting a web site at time ti and is generating a series of actions in order to access Utarget through a URL path that
connects U1 to U3. At a later time, tk, a different device (B) is accessing U ′

target, but without issuing HTTP requests
for any of the intermediate steps of the path U1 to U3. This action, thus, is signaling an event that the second session,
initiated at tk, is a synced session.

allows accessing the article by a different (synchronized)
browser running on another device and at any time. Thus,
at a later time, tk, we can assume that the user returns
back to the article, but now this comes from a different
device. However, this time the user issues an HTTP re-
quest towards an article of depth three, without any of
the intermediate requests needed. Essentially, the depth of
the new path is now one (1), and this action is signaling
that the session that was performed at time tk is a synced
session.

The intuition described above is based on the follow-
ing observation: when a user visits a web page (e.g., a
news portal or an online shopping page) and then they re-
visit the exact same web page at a different time, in case
we have synced browsers, the depth of those two sessions
will be different, while the second session’s depth will
be equal to one. The user re-visits the web page later
to continue whatever action did not finish (e.g., continue
reading an article or a product purchase order). The two
events share the fact that a single page is accessed two
times, but the second one is a direct visit (depth=1), while
the first one is through a URL path (depth > 1).

We realize this methodology in Algorithm 1. The first
six lines of the algorithm sort the data, which is then
grouped based on the URL attribute. The output is a set
of lists that contain all HTTP requests for the exact same
URL. The next sixteen lines of code (Lines 7-21) represent
how we realize the depth characteristic of each request. In
lines 7 to 11 we create a list that groups requests that have
the exact same timestamp together, in order to detect the
URL path of each request. Subsequently, for each request
in the grouped_by_url list, we search if the request
exists in any list from the same timestamps list. If it exists
we set the depth of this request equal to the size of the
list. Otherwise, if the request is not present in any list
of the same timestamps list, we set its depth equal to 1
(Lines 12-21).

We assume that requests with the exact same URL,
but with a different timestamp, are likely synced re-
quests. Therefore, we filter out all requests that have
the same URL and timestamp. These records reflect
multiple requests by a single device. Thus, in lines 22
to 27, we construct a new list that contains all the
requests that have the same URL and different times-
tamps. The find_different_timestamps function
(Line 26) identifies which requests of the input list

have different timestamps. Moreover, before it returns the
different_timestamps list to the main program, it
compares the depth attribute of each request that have
been included in the list. If all the requests that have been
included to the list have depth equal to 1, then they are
removed from the list. If no request have a depth greater
than 1, it means that there is no request with a URL path,
like it is described in Figure 4.

Apart from the timestamp and the URL, we also use
the cookies attribute that is collected through the plug-in.
At this point of the algorithm we have identified the re-
quests that are possibly synced based on the characteristics
that are described in Figure 4. However, there are cases
where visiting a target URL may force the user’s browser
to perform additional requests towards other URLs. This
is common for web pages that include media or ads from
other web sites. These subsequent URLs are not user
generated, but machine-generated. It is difficult to ignore
such URLs, since they appear in our logs with arbitrary
values of depths and, thus, they are very likely to introduce
false positives. To filter out these cases, we leverage the
available information of cookies to distinguish machine-
generated from user-generated URLs. Cookies are set by
the web site when a user visits the target URL. For
the machine-generated requests, the URL attribute is the
same, but some of the cookies are not. This happens
because the cookies are generated from web sites hosted
in different domains, and subsequently the cookie values
differ. For example, the same ad, which can be included
when the user is visiting A.com and B.com, has the exact
same URL but very different cookies as they are set by
A.com and B.com, respectively.

An example of two requests with the characteristics
described above is shown in Figure 5. We can observe that
the URL of those requests most probably belongs to an ad,
generated by the target URL. The cookies field of these
two requests does not contain similar information. We can
observe that most of the cookies of the first requests have
been generated by cnn.com, while most of the cookies of
the second requests have been generated from bbc.com
and jennikanye.com. Thus, we can conclude that those
requests are machine-generated, and belong to an ad or
media, that are incorporated to the target URL. We remove
this kind of requests after the execution of the cookies
similarity function. The similarity function, that we use
to decide whether the information included in cookies is

919

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Cookies similarity example. The figure above shows an example of the cookies field of two different
web sessions, that have the exact same URL and different timestamps. The cookies values differ significantly because
the depicted HTTP requests are machine-generated and not user-generated requests, issued by ads or media that are
incorporated to the requested web page.

similar, is defined in lines 42 to 60 of Algorithm 1.

First, we separate the cookies for each row of requests
that have the same URL and different timestamps, and
store it to a list. Subsequently, we use this list to compare
the cookies with each other and decide whether they are
similar or not. In our case we consider two cookies to
be similar when either of the following scenarios applies:
(i) the two cookies are exactly the same, or (ii) the two
cookies are nearly the same, with a similarity equal or
greater than 85%. To achieve that we compare the two
strings and search if Cookie Name and Cookie Value
fields are the same. If they are the same we increase a
counter that indicates that two similar cookies have been
found, and we add the similar cookies in a separate list.
We repeat the steps for every pair of cookies in the list.
When the execution of the similarity function for cookies
is completed and it returns to the main program the list
that contains the similar cookies, we compare the list
that contains the requests with the different timestamps
with the similar_cookies list (lines 29 to 36). If the
cookie for a request is included in the similar cookies
list, we add the request to a list with the possible synced
requests.

The last part of the algorithm (lines 37 to 42) is to
filter out the requests with a URL that does not contain a
path. For instance, we keep in our corpus all the requests
that indicate a specific web page in www.cnn.com, such
as www.cnn.com/news-page115/, but not the main page,
www.cnn.com, since it does not contribute to the depth
value. The new list that we create, without those requests,
contains the possible synced requests of the dataset. This
step completes our algorithm, and we consequently create
a table with all reconstructed sessions. The rest of the
sessions that are not included in the list are considered
not synced.

4.3. Comparison

The last step of the analysis computes the percentages
of the correct and wrong guesses of our algorithm. For
this, we compare the synced field for each request from the
ground truth and the reconstruction tables, respectively.
An example of how the synced field is stored in the two
tables is shown in Figure 8 of Appendix B. The synced
field in both tables can either contain a list with the
other requests that each HTTP request is synced, or a
null value, which reflects that the HTTP request is not
synced. In case the request is not synced and the algorithm
marks it as synced, or vice-versa, then we have a false
positive or a false negative, respectively. If the algorithm
detects correctly that the request is not synced, meaning
that both values of the synced fields are null, then we
have a true negative. The last case is when the values
of both the ground truth and the reconstruction table are
not null, thus the algorithm detects that the request is
synced. In that case, we compare the two lists and if they
are identical, we have a true positive. Otherwise, we have
a false positive because although the algorithm detects
that the request is synced, it fails to compute the correct
requests that are synced, which belong to other users.

5. User Study

In this section we describe the procedure of the user
study we conduct for evaluating our methodology. The
study took place between April and May of 2022; we
received a clearance for performing the study from our
National Bioethics Committee, in advance. At the end of
the study, 30 users participated and we gathered 138,962
HTTP requests in total. The total number of requests we
have collected is comparable to one of the three large-
scale studies performed on the effectiveness of tracking

920

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

with browser fingerprinting [2]. Laperdix et al. perform
an analysis of 118,934 fingerprints [16], a sample which
is very close to the sample we use in this study. Thus,
regardless the number of participants, the volume of our
data is comparable to other large-scale studies related to
browser fingerprinting.

The users who participate in the experiment have a
basic technological background. Furthermore, we do not
take into account any demographic information about the
users, such as gender, nationality, and age, so the selection
of the users is random. By random we mean that we
did not choose the users based on any criteria, and the
participants of this study are volunteers who accepted
our invitation to take part in our study. Initially, each
participant needs to go through the aim of the study, and
the type of data we collect. We continue the procedure
only if the user agrees. Then, each participant needs to
install the browser extension we have developed in their
browser and follow the instructions we provide to them.
The users are not instructed to visit specific web sites,
but they are instead free to browse the web. To finish the
study they must complete all the steps, as described in
Figure 1.

The evaluation of our methodology is a closed-world
study, in a controlled environment with a specific number
of users. Performing a similar study in an open-world
experiment can be challenging. Specifically, users may
hesitate to donate freely their web traffic, even if this
collection happens anonymously. However, even with a
closed-world study, the volume of data collected, as we
have already argued, is enough for making the study
representative.

6. Evaluation

In this section we evaluate the results of the user
study, describe the findings of our work and discuss their
importance for user privacy.

6.1. Overview

We compare the ground-truth data with the recon-
structed values as they are generated from our algorithm.
When comparing the sessions, four scenarios may occur:
(i) the ground-truth session is synced and our algorithm
detects it as synced, (ii) the ground truth session is not
synced and our algorithm does not detect it as synced, (iii)
the ground truth session is not synced and our algorithm
detects it as synced, and (iv) the ground truth session is
synced and our algorithm does not detect it as synced.
These scenarios represent the number of true positives,
true negatives, false positives, and false negatives, respec-
tively, which we further discuss in Section 4.3.

In the comparison phase we keep four counters, one
for each scenario, and we increase the corresponding
counter for each session. For instance, if the request is
synced in the ground truth and is also synced in the
reconstruction table we increase the true positives value.
Once the comparison phase is completed, we also compute
the total true and false guesses of the study.

The comparison of sessions happens over a balanced
dataset in terms of synced and non-synced requests. From
the 138,962 collected requests, 64,396 are non-synced

and the rest 74,567 are synced. Moreover, we collect
five attributes through the browser extension for each
session, namely URL, timestamp, user agent, IP address
and cookies; we can further compute the value of depth
for each URL access, as discussed in Section 4.2.

6.2. Performance

Initially, we execute the analysis algorithm as it is
discussed in Section 4. Essentially, we use the URL,
the timestamp and the computed depth for classifying
each session as synced or not synced. The results are
represented in Table 1 below.

The total percentage of true guesses is 64%. These
results are from 84,070 collected requests from 13 unique
users. From the 84,070 requests, 53,553 of them are
flagged accurately. More specifically, 41,328 sessions are
flagged as synced, and 12,225 sessions as not synced,
correctly. The false positives and false negatives reach the
25,059 and 5,458 sessions, respectively. It is evident that
the high percentage of false guesses is mostly due to false
positives, i.e., sessions that we flag as synced, but they are
not. A large fraction of false positives is due to machine-
generated requests, as we have discussed in Section 4.2.
To reduce false positives, we further leverage the available
information of cookies to distinguish machine-generated
from user-generated URLs. In the next part, we apply
the algorithm using three attributes, namely the URL and
timestamp, but, also, the cookies.

6.3. Performance with three attributes

We now consider cookies as a contributing attribute in
order to filter out machine-generated from user-generated
requests. The results are presented in Table 2. Specifically,
from the 138,962 requests we collect in total, the algo-
rithm detects 106,420 of them accurately. The algorithm
flags 57,661 sessions as synced, and 48,759 sessions as
not synced, correctly. The percentage of true guesses, thus,
is ∼77%, while the other ∼23% corresponds to false
guesses. For all false guesses, 15,636 sessions are flagged
as synced, but they are not (false positives), while 16,906
synced sessions are not detected (false negatives). Con-
sequently, we have 35,542 false guesses out of 138,962
sessions.

6.4. False guesses

We can observe that there is a significant reduction in
false positives when we include cookies in our analysis
as described in Section 6.2. From 30% of the total false
guesses, we now have only 11.2% of the total guesses. On
the other hand, false negatives are increased by 3%, and
from 7% of the total guesses, they are now 11%. In order
to further attribute the root of false positives and negatives,
we explore the relationship between certain web pages
being browsed and the status of the browser (synced/not
synced). Specifically, there are two different cases that our
algorithm incorrectly detects as synced.

• This case is depicted in Figure 6 (Appendix A).
A user who owns two different devices, which
are not synced, visits the same web page at two

921

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Representation of all the values extracted from the results with two attributes.

Results with two attributes
Type of data Total number of data True positives True negatives False positives False negatives Total true guesses Total false guesses
Numeric 84,070 41,328 12,225 25,059 5,458 53,553 30,517
Percentage 100% 49,2% 14,5% 29,8% 6,5% 64% 36%

different timestamps. The first visit initializes a
URL path U1 to U2 that ends up to Utarget at time
ti. Later, at time tk, the user re-visits Utarget from
another device, but without being synced. This
is the case where the user may have copied the
URL link to return to the web page. Our algorithm
will mark those requests as synced, while they are
not. Notice, that this case represents an implicit
syncing.

• This case is depicted in Figure 7 (Appendix A).
Assume we have two different users, Alice and
Bob, who each own two devices, A1 and A2, B1,
and B2, respectively. Both users have their devices
synchronized to their browser account. Alice visits
a specific web page, Wtarget, using device A1 at
a timestamp ti, and then she saves that web page
to return later. Then, she returns at a timestamp
tk to the web page by accessing it through the
synchronization feature. If Bob also visits Wtarget

at a different timestamp tz , using device B1, and
then returns to it utilizing the synchronization
feature from device B2, then our approach will not
be able to distinguish which requests have been
issued from which user. However, there are some
cases where our approach will pair the requests
from A1 and A2 and B1 and B2, correctly.

i) If ti == tz , then our approach will pair
correctly the requests of A1 and A2, and the
requests of B1 and B2, as synced. This will hap-
pen because the algorithm searches for requests
that are issued at different timestamps. Thus, if
ti == tz , after the algorithm (lines 11-14 of
Algorithm 1) groups them all together because
of the same URL, it should separate them at the
next step because they have the same timestamp.

ii) Similarly, if tk == tn and ti �= tz , the
requests that are issued from A1, A2 and
B1, B2 will be paired correctly, because they
will be stored on different records of the
different_timestamps list (lines 11-14
of Algorithm 1).

This false-positive category can be also generated
for users with multiple devices (more than two).
For instance, we assume that we have two users
Alice and Bob, but now Alice owns three devices
instead of two, A1, A2, A3 and Bob owns two
devices, B1 and B2. Both users have their devices
synced to their browser account. Alice visits a
specific web page, Wtarget at a timestamp ti, using
device A1 and then saves this web page to return
later. Then, she returns to the web page using both
devices A2, and A3 at different timestamps tk
and tm. Bob also visits Wtarget at a timestamp
tz , using device B1, and re-visits Wtarget using
device B2, utilizing the synchronization feature,

at a different timestamp tn. In this scenario, our
methodology will not be able to distinguish which
requests have been performed from which user.
Similarly to the scenario where the users own two
devices, the cases that our approach will pair the
requests from A1, A2, A3 and B1 and B2 correctly
are the following:

i) If ti == tz , then our approach will pair cor-
rectly the requests of A1, A2, and A3 and the
requests of B1 and B2, as synced.

ii) If ti �= tz , but either tk == tn or tm ==
tn, then again the requests will be paired at the
correct synced lists.

6.5. Discussion

As mentioned in Section 3.1, where we define the
threat model of our approach, we only use the attributes
that can be collected passively by the web site in the
least intrusive way. However, additional attributes, such as
canvas, screen resolution, list of plugins, use of local stor-
age, WebGL features, list of fonts and color depth, could
be also collected through more intrusive JavaScript-driven
injections. In the case where we collect both passively and
actively attributes, the accuracy of our algorithm could be
highly improved. For instance, canvas-related fingerprint-
ing that works by exploiting the HTML5 canvas element
could result in highly unique fingerprints. Therefore, we
assume that if we use more intrusive JavaScript-driven
injection for gathering the attributes mentioned above, the
accuracy of our methodology can be potentially improved.
However, our intention is not to explore such an aggres-
sive fingerprinting threat model, which has been already
explored in many other papers [23, 24, 25, 26, 27].

Another issue we consider is if we can use more at-
tributes for better distinguishing machine-generated from
user-generated requests in order to further reduce false
positives. We incorporate two more attributes after the
execution of the similarity function for cookies (after line
36 of Algorithm 1). Before appending the requests to
the final_result list we identify which requests have
also the same IP address and user agent, additionally to
cookies. We compare the user agent and IP address values
for each list that contains the same URL, different times-
tamps and similar cookies (as defined in the similarity
function, lines 43-61 of Algorithm 1). We append only the
requests that their user agent and IP address values are also
the same to the final_result list. Table 3 presents
the quantitative results of our approach when considering
all five attributes we collect, namely URL, timestamp,
user agent, IP address and cookies. We can observe that
the user agent and the IP address attributes decrease the
success rates of the algorithm instead of increasing its
accuracy. More specifically, the true guesses reach only
the 57% and the false guesses reach the 43%. There is

922

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: Representation of all the values extracted from the results with three attributes.

Results with three attributes
Type of data Total number of data True positives True negatives False positives False negatives Total true guesses Total false guesses
Numeric 138,962 57,661 48,759 15,636 16,906 106,420 35,542
Percentage 100% 41,5% 35,1% 11,2% 12,2% 76,6% 23,4%

a large increase in the false negatives proportion, which
grows to 28% from 12% (three attributes).

The user agent attribute is not useful because it takes
very distinct values. Most of the times, if the browser and
the platform are the same, the user agent attribute is also
the same. In our case, the browser section is the same for
all users, because we collect the data through a Mozilla
extension. The only part that differs is the platform. The
platform options are also very specific. However, there
is a proportion of requests that are removed from the
possible_synced list, but they should not. Those are
the requests that are marked correctly as synced from
the previous steps, and they have been performed by the
same user, from two different devices that use different
platforms. This means, that their user agent field differs
and they are removed when comparing the user agent field,
while they should not. Those requests increase the false
negative percentage.

Last but not least, as far as the attribute of the IP
address is concerned, it is a value that constantly changes.
Thus, it cannot be used to correlate sessions of different
timestamps, because the IP addresses of those sessions
will be totally different. We want to identify synced ses-
sions that have been performed by the same user through
multiple devices, however, the IP address of these devices
is likely to be different. This can further drive a rise in
false negatives.

7. Related Work

Peter Eckersley conducts the first study about browser
fingerprinting in 2010 [1] and the findings show that
83,6% of the fingerprints are extremely unique [1], mean-
ing that those fingerprints could differentiate the users.
Browser fingerprinting is divided into many different fields
and the research in that area is broad and extensive.
Although our work is orthogonal to the already existing
literature about browser fingerprinting, our approach is
associated with the broad field of cross-device tracking.
However, we are the first to investigate the use of browser
fingerprinting together with synchronized browsers. The
existing literature about browser fingerprinting and cross-
device tracking is described in the sections below.

Upathilake et al. [28] perform a systematic classi-
fication of browser fingerprinting techniques. Laperdix
et al. [2] publish a survey about browser fingerprinting,
and they list all the research performed in the domain
of browser fingerprinting. Furthermore, they discuss the
current state of browser fingerprinting and the challenges
that occur from it. Apart from the traditional and known
ways to fingerprint the users, there are some novel tracking
mechanisms that have been proposed recently [4, 7, 5, 6].

A lot of detection, mitigation and prevention mecha-
nisms have been proposed by the research community over
the years. Nikiforakis et al. propose PriVaricator [29]. The
authors focus on the linkability of browser fingerprint and

not to its uniqueness. Wu et al. [30] propose UNIGL. Their
work focuses on the WebGL feature, that is responsible of
rendering WebGL tasks. Bird et al. [31] propose a semi-
supervised learning approach for detecting fingerprinting
scripts. More approaches based on Machine Learning, pro-
posed by Iqbal et al. [32], Bahrami et al. [33], and Rizzo et
al. [34]. Moreover, Durey et al. [35] propose an algorithm
that detects browser fingerprinting scripts. Their algorithm
is based on an incremental process and it relies on both
automatic and manual decisions. Furthermore, Moad et
al. [36] introduce the Fingerprint Defender, which is a
Google Chrome extension that anonymize user artifacts
for tracking.

Due to the wide research around defensive techniques
against browser fingerprinting for tracking users, some
researchers focus on the evaluation of the effectiveness
of those techniques. Acar et al. [23] perform a large-scale
study for three tracking mechanisms and their results show
that even sophisticated and privacy-aware users face great
difficulties in evading tracking mechanisms. Moreover,
there are studies that explore and evaluate the effectiveness
of browser fingerprinting. Gómez-Boix et al. [37] conduct
a study to explore the effectiveness of browser fingerprint-
ing at uniquely identifying a large group of users when
analyzing millions of fingerprints over a few months.
In addition, Laperdix et al. [16] explore the validity of
browser fingerprinting at the time (2016). More recently,
Fietkau et al. [38] do a systematic analysis of various
fingerprinting tools.

A work by Vastel et al. [39] studies the browser
fingerprinting from a different perspective. They study
browser fingerprinting as crawler detection mechanism.
Furthermore, Andriamilanto et al. [40] use browser fin-
gerprinting as web authentication mechanism.

7.1. Cross-device tracking

Cross-device tracking (CDT) comprises of a set of
technologies and methods that are used to track users
across multiple devices, such as mobile devices, desktop
computers, laptops, and connected TVs [12]. It works by
matching activity across different devices to the same user
who performs them by using shared identifiers, that are
in use on each user’s device [8]. Cross-device tracking
could be deterministic or probabilistic. Deterministic CDT
utilizes 1st-party login services that require user authenti-
cation, while in probabilistic CDT 3rd parties attempt to
identify which devices belong to the same user based on
network access data, and common behavioral patterns in
browsing history [12]. The existing literature about cross-
device tracking is reported in the rest of this section.

Brookman et al. [8] and Zimmeck et al. [13] con-
ducted studies to assess what information about CDT
is observable from the perspective of the end-user, and
evaluate the privacy implications of ML applications to
cross-device data, respectively. Mavroudis et al. [10] and

923

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: Representation of all the values extracted from the results with five attributes.

Results with five attributes
Type of data Total number of data True positives True negatives False positives False negatives Total true guesses Total false guesses
Numeric 138,962 44,112 35,031 20,455 39,364 69,143 69,819
Percentage 100% 31,7% 25,3% 14,7% 28,3% 57% 43%

Arp et al. [14] explores the security and privacy impli-
cations of ultrasound based technologies when used for
CDT. Korolova et al. [9] showed that cross-app tracking
is feasible using nearby BLE. Moghaddam et al. [11]
examined the advertising and tracking ecosystem of OTT
streaming devices. Finally, Solomos et al. [12] designed
Talon, a practical framework for CDT measurements.

8. Conclusion

In this paper we are the first, to the best of our
knowledge, to deliver a framework that can be used by
web sites to detect synchronized HTTP requests, issued
by the same user from browsers on different devices. For
detecting this, we reconstruct different sessions based on
their requested attributes and timestamps. We evaluated
our methodology through a user study we conduct, with
30 users in total. We collected 138,962 HTTP requests,
with a browser extension we produced for Mozilla Firefox,
and the ∼77% of all the sessions are detected correctly
from our algorithm. Our results show that the detection
of synchronized sessions through browser fingerprinting
is possible with a high success rate. They also indicate
major implications to user privacy, that have not been
investigated before.

Acknowledgments

We thank the anonymous reviewers for their con-
structive feedback. The research conducted in this paper
was triggered by the project “Collaborative, Multi-modal
and Agile Professional Cybersecurity Training Program
for a Skilled Workforce In the European Digital Sin-
gle Market and Industries” (CyberSecPro) project. This
project has received funding from the European Union’s
Digital Europe Programme (DEP) programme under grant
agreement No 101083594. The authors are grateful for the
financial support of this project that has received funding
from the European Commission. The views expressed
in this paper represent only the views of the authors
and not of the European Commission or the partners
in the above-mentioned project. Moreover, the work of
this paper was also supported by the European Union’s
Horizon 2020 and Horizon Europe research and innova-
tion programmes under grant agreements No.101070599
(SecOPERA), No. 830929 (CyberSec4Europe) and No.
101007673 (RESPECT).

References

[1] P. Eckersley, “How unique is your web browser?”
in International Symposium on Privacy Enhancing
Technologies Symposium. Springer, 2010, pp. 1–
18.

[2] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine,
“Browser fingerprinting: A survey,” ACM Transac-
tions on the Web (TWEB), vol. 14, no. 2, pp. 1–33,
2020.

[3] T. Bujlow, V. Carela-Español, J. Sole-Pareta, and
P. Barlet-Ros, “A survey on web tracking: Mecha-
nisms, implications, and defenses,” Proceedings of
the IEEE, vol. 105, no. 8, pp. 1476–1510, 2017.

[4] K. Solomos, J. Kristoff, C. Kanich, and J. Polakis,
“Tales of favicons and caches: Persistent tracking
in modern browsers,” in Network and Distributed
System Security Symposium, 2021.

[5] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and
N. Nikiforakis, “Fingerprinting in style: Detecting
browser extensions via injected style sheets,” in 30th
USENIX Security Symposium (USENIX Security 21),
2021, pp. 2507–2524.

[6] T. Wu, Y. Song, F. Zhang, S. Gao, and B. Chen,
“My site knows where you are: A novel browser
fingerprint to track user position,” in ICC 2021-
IEEE International Conference on Communications.
IEEE, 2021, pp. 1–6.

[7] I. Fouad, C. Santos, A. Legout, and N. Bielova,
“Did I delete my cookies? Cookies respawn-
ing with browser fingerprinting,” arXiv preprint
arXiv:2105.04381, 2021.

[8] J. Brookman, P. Rouge, A. Alva, and C. Yeung,
“Cross-device tracking: Measurement and disclo-
sures.” Proc. Priv. Enhancing Technol., vol. 2017,
no. 2, pp. 133–148, 2017.

[9] A. Korolova and V. Sharma, “Cross-app tracking via
nearby bluetooth low energy devices,” in Proceed-
ings of the Eighth ACM Conference on Data and
Application Security and Privacy, 2018, pp. 43–52.

[10] V. Mavroudis, S. Hao, Y. Fratantonio, F. Maggi,
C. Kruegel, and G. Vigna, “On the privacy and
security of the ultrasound ecosystem,” Proceedings
on Privacy Enhancing Technologies, vol. 2017, no. 2,
pp. 95–112, 2017.

[11] H. Mohajeri Moghaddam, G. Acar, B. Burgess,
A. Mathur, D. Y. Huang, N. Feamster, E. W. Felten,
P. Mittal, and A. Narayanan, “Watching you watch:
The tracking ecosystem of over-the-top tv streaming
devices,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Se-
curity, 2019, pp. 131–147.

[12] K. Solomos, P. Ilia, S. Ioannidis, and N. Kourtellis,
“Talon: An automated framework for cross-device
tracking detection,” in 22nd International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID 2019), 2019, pp. 227–241.

[13] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and
T. Jebara, “A privacy analysis of cross-device track-
ing,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 1391–1408.

[14] D. Arp, E. Quiring, C. Wressnegger, and K. Rieck,

924

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

“Privacy threats through ultrasonic side channels on
mobile devices,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2017,
pp. 35–47.

[15] StatCounter, 2022, Last accessed 13 September
2022. [Online]. Available: https://gs.statcounter.com/

[16] P. Laperdrix, W. Rudametkin, and B. Baudry,
“Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints,” in
2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 878–894.

[17] Google, Last accessed 28 Feb 2022. [On-
line]. Available: https://www.google.com/chrome/
browser-features/

[18] Mozila Firefox, Last accessed 28 Feb 2022.
[Online]. Available: https://www.mozilla.org/en-US/
firefox/sync/

[19] A. Paverd, A. Martin, and I. Brown, “Modelling
and automatically analysing privacy properties for
honest-but-curious adversaries,” Tech. Rep, 2014.

[20] Statista, “User population of selected internet
browsers worldwide from 2014 to 2021,”
2022, Last accessed 12 May 2022. [On-
line]. Available: https://www.statista.com/statistics/
543218/worldwide-internet-users-by-browser

[21] Mozilla Developer Networks, Last accessed
29 March 2022. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/Anatomy_of_a_WebExtension

[22] MDN, Last accessed 18 May 2021. [Online].
Available: https://developer.mozilla.org/en-US/docs/
Mozilla/Add-ons/WebExtensions/API/webRequest/
onBeforeRequest

[23] G. Acar, C. Eubank, S. Englehardt, M. Juarez,
A. Narayanan, and C. Diaz, “The web never for-
gets: Persistent tracking mechanisms in the wild,” in
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014,
pp. 674–689.

[24] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz,
S. Gürses, F. Piessens, and B. Preneel, “Fpdetective:
dusting the web for fingerprinters,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer
& communications security, 2013, pp. 1129–1140.

[25] N. M. Al-Fannah, W. Li, and C. J. Mitchell, “Be-
yond cookie monster amnesia: Real world persistent
online tracking,” in Information Security: 21st In-
ternational Conference, ISC 2018, Guildford, UK,
September 9–12, 2018, Proceedings 21. Springer,
2018, pp. 481–501.

[26] S. Englehardt and A. Narayanan, “Online tracking:
A 1-million-site measurement and analysis,” in Pro-
ceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp.
1388–1401.

[27] N. Nikiforakis, A. Kapravelos, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “Cookieless
monster: Exploring the ecosystem of web-based
device fingerprinting,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 541–555.

[28] R. Upathilake, Y. Li, and A. Matrawy, “A classifi-
cation of web browser fingerprinting techniques,” in
2015 7th International Conference on New Technolo-

gies, Mobility and Security (NTMS). IEEE, 2015,
pp. 1–5.

[29] N. Nikiforakis, W. Joosen, and B. Livshits, “Privari-
cator: Deceiving fingerprinters with little white lies,”
in Proceedings of the 24th International Conference
on World Wide Web, 2015, pp. 820–830.

[30] S. Wu, S. Li, Y. Cao, and N. Wang, “Rendered pri-
vate: Making {GLSL} execution uniform to prevent
{WebGL-based} browser fingerprinting,” in 28th
USENIX Security Symposium (USENIX Security 19),
2019, pp. 1645–1660.

[31] S. Bird, V. Mishra, S. Englehardt, R. Willoughby,
D. Zeber, W. Rudametkin, and M. Lopatka, “Actions
speak louder than words: Semi-supervised learning
for browser fingerprinting detection,” arXiv preprint
arXiv:2003.04463, 2020.

[32] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprint-
ing the fingerprinters: Learning to detect browser
fingerprinting behaviors,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp.
1143–1161.

[33] P. N. Bahrami, U. Iqbal, and Z. Shafiq, “Fp-
radar: Longitudinal measurement and early de-
tection of browser fingerprinting,” arXiv preprint
arXiv:2112.01662, 2021.

[34] V. Rizzo, S. Traverso, and M. Mellia, “Unveiling
web fingerprinting in the wild via code mining and
machine learning,” Proceedings on Privacy Enhanc-
ing Technologies, vol. 2021, no. 1, pp. 43–63, 2021.

[35] A. Durey, P. Laperdrix, W. Rudametkin, and
R. Rouvoy, “An iterative technique to iden-
tify browser fingerprinting scripts,” arXiv preprint
arXiv:2103.00590, 2021.

[36] D. Moad, V. Sihag, G. Choudhary, D. G. Duguma,
and I. You, “Fingerprint defender: Defense against
browser-based user tracking,” in International Sym-
posium on Mobile Internet Security. Springer, 2021,
pp. 236–247.

[37] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hid-
ing in the crowd: an analysis of the effectiveness of
browser fingerprinting at large scale,” in Proceedings
of the 2018 world wide web conference, 2018, pp.
309–318.

[38] J. Fietkau, K. Thimmaraju, F. Kybranz, S. Neef, and
J.-P. Seifert, “The elephant in the background: A
quantitative approachto empower users against web
browser fingerprinting,” in Proceedings of the 20th
Workshop on Workshop on Privacy in the Electronic
Society, 2021, pp. 167–180.

[39] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc,
“Fp-crawlers: studying the resilience of browser fin-
gerprinting to block crawlers,” in MADWeb’20-NDSS
Workshop on Measurements, Attacks, and Defenses
for the Web, 2020.

[40] N. Andriamilanto and T. Allard, “Brfast: a tool to se-
lect browser fingerprinting attributes for web authen-
tication according to a usability-security trade-off,”
in Companion Proceedings of the Web Conference
2021, 2021, pp. 701–704.

925

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

A. False positives cases

Figure 6: No synchronization. A user who owns two different devices, which are not synced, visits the same web page
at two different timestamps. The first visit initialized a URL path U1 to U2 that ends-up to Utarget. Later, the user
re-visits Utarget from another device, but without being synced. This is the case where the user may copied the URL
link. Our algorithm will mark those requests as synced, while they are not.

Figure 7: Wrong synchronization pairing. Two users, Alice and Bob, own devices A1, A2, and B1, B2, respectively,
which are synchronized. Alice visits a specific web page Wtarget following a URL path from the landing page of the
web site at time ti, from device A1. At a later time, tk, Alice re-visits Wtarget, from device A2. However, this time she
does not initiate any of the intermediate requests, because she accesses Wtarget through the synchronization feature.
Bob also visits the same web page Wtarget following a URL path from the landing page of the web site at time tz ,
from device B1. At a later time, tn, he re-visits Wtarget, from device B2. Our methodology could not distinguish which
requests have been performed form Alice’s devices and which from Bob’s. However, there are some cases where the
algorithm pairs the requests correctly, and they are described in Section 6.4.

926

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

B. Example of Synced field in the database

ID:1961
URL:https://nsi.activity.api.bbc.com/my/plays
Timestamp: 18/4/2022, 7:33:55 PM
User_Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
IP: 194.42.16.139
Cookies: Cookie Domain: .cnn.com
Synced: [973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985]

ID: 1966
URL: https://bbc.com/templates/data/datetime.aspx
Timestamp: 17/4/2022, 12:09:04 AM
User_Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:97.0),
Gecko/20100101 Firefox/97.0
IP: 62.228.18.230
Cookies: Domain: bbc.com
Synced: NULL

Figure 8: Example of the synced field in the database. The figure above shows an instance of the reconstruction
database. The synced field could contain either null values or a list with IDs, that indicate the requests that are also
synced with the specific request.

927

Authorized licensed use limited to: University of Cyprus. Downloaded on August 29,2023 at 14:44:33 UTC from IEEE Xplore. Restrictions apply.

