
No Need to Hide: Protecting Safe
Regions on Commodity Hardware

Koen Koning
Vrije Universiteit Amsterdam

koen.koning@vu.nl

Xi Chen
Vrije Universiteit Amsterdam

x.chen@vu.nl

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giu↵rida@cs.vu.nl

Elias Athanasopoulos
University of Cyprus

eliasathan@cs.ucy.ac.cy

Abstract
As modern 64-bit x86 processors no longer support the
segmentation capabilities of their 32-bit predecessors, most
research projects assume that strong in-process memory
isolation is no longer an affordable option. Instead of strong,
deterministic isolation, new defense systems therefore rely on
the probabilistic pseudo-isolation provided by randomization
to “hide” sensitive (or safe) regions. However, recent attacks
have shown that such protection is insufficient; attackers can
leak these safe regions in a variety of ways.

In this paper, we revisit isolation for x86-64 and argue that
hardware features enabling efficient deterministic isolation do
exist. We first present a comprehensive study on commodity
hardware features that can be repurposed to isolate safe
regions in the same address space (e.g., Intel MPX and
MPK). We then introduce MemSentry, a framework to harden
modern defense systems with commodity hardware features
instead of information hiding. Our results show that some
hardware features are more effective than others in hardening
such defenses in each scenario and that features originally
conceived for other purposes (e.g., Intel MPX for bounds
checking) are surprisingly efficient at isolating safe regions
compared to their software equivalent (i.e., SFI).

CCS Concepts •Security and privacy ! Systems secu-
rity; Software and application security

Keywords hardware features, isolation, information hiding,
software fault isolation

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c� 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064217

1. Introduction
Operating systems generally provide strong isolation between
different processes, but they do not provide any isolation be-
tween components inside a process. This lack of intra-process
isolation allows for fatal memory disclosures in C/C++ bi-
naries, which rank among the most serious vulnerabilities
today and have a key role in software exploitation. These
memory disclosures allow attackers to reveal the code lay-
out [58] and thus bypass fine-grained diversification [54, 66],
leak sensitive data such as cryptographic keys [24], but, most
importantly, attackers can bypass state-of-the-art security de-
fenses [40, 42] by deliberately revealing safe regions that host
sensitive data of the vulnerable program [26, 29, 32, 52]. In
this paper, we advocate that no matter the defense in place, if
deterministic isolation is not guaranteed, then the protection
can be bypassed. To achieve such guarantees, we consider
efficient isolation techniques based on commodity hardware
features. We also introduce MemSentry, a framework that
implements these techniques and allows for a comprehensive
and practical comparison. Finally, we show that, other than
for evaluation purposes, MemSentry can be effectively used
to harden modern defense systems that are based on informa-
tion hiding, including those now deployed in production such
as SafeStack [40, 61].

Modern security defenses rely on the confidentiality of
their metadata for managing their state. No matter how
advanced the protection, any leak of the sensitive metadata
is sufficient to subvert it completely. For example, code
pointer integrity (CPI) [40] stores all sensitive pointers and
related metadata in a so-called safe region which, on 64-
bit systems, is hidden at a random location in a very large
address space. As a result, the protection of the safe region
hinges on the entropy of address space layout randomization
(ASLR). Unfortunately, there are several different strategies
an attacker can follow to bypass ASLR. No matter the size
of the virtual address space, attackers can infer the location

of the hidden object by leveraging allocation oracles [52],
thread spraying [32], crash-resistant primitives [29], or other
side channels [8, 26, 33]. All the aforementioned strategies
are strong evidence that the probabilistic isolation offered by
information hiding should no longer be considered an option
as a replacement for deterministic isolation. Instead, hardware
features should be revisited for delivering deterministic and
efficient memory isolation of safe regions. Where 32-bit
x86 architectures provide segmentation to efficiently isolate
sensitive data, there is no such answer on modern x86-64
processors. While alternatives to probabilistic isolation exist,
they are typically tailor-made for a particular setting. In
this paper we instead propose a general design for memory
isolation, allowing any deterministic isolation technique to
be applied to the safe regions of any defense. One example
is software fault isolation (SFI), which sandboxes code with
instrumentation, for instance to ensure attackers cannot access
memory outside of a predefined region [70]. While commonly
applied to sandbox native C/C++ code in the browser, some
defenses also adopted it to prevent attackers from bypassing
the control-flow integrity (CFI) instrumentation [50]. Recent
work on optimizing SFI also supports the importance of
efficient isolation in modern defenses, but such work often
focusses on a very specific domain. For example, LR2 [9]
reduces SFI checks to protect diversified code only.

The traditional POSIX way of achieving intra-process
isolation is by using the mprotect system call, which can
instruct the kernel to add or remove permissions of memory
pages on the fly. Unfortunately, using this strategy to protect
safe regions results in significant overhead (e.g., 20–50x in
our experiments). We therefore look at hardware features of
modern 64-bit Intel processors, including memory protection
extensions (MPX), encryption instructions (AES-NI), mem-
ory protection keys (MPK), software guard extensions (SGX),
and virtualization features such as the new VMFUNC instruc-
tion. While researchers have used features like AES-NI [41]
or leveraged special x86-64 constructs [23], no prior work
has evaluated the pros and cons of the different hardware fea-
tures for isolating safe regions, nor provided a general design.
While we focus on the x86-64 architecture, our approach is
also applicable to other architectures when similar hardware
features are available (e.g., ARM [59]).

In addition to our analysis of isolation techniques, we also
present MemSentry, a comprehensive and self-contained de-
terministic memory isolation framework. MemSentry serves
as a testbed for these techniques, allowing existing and fu-
ture techniques to be implemented and deployed easily. Not
only does it provide a platform for benchmarking and com-
paring these hardware features, but also to harden modern
security defenses that are based on information hiding. To
demonstrate its applicability, we evaluate MemSentry against
SPEC 2006 and in a variety of scenarios, such as shadow
stacks, control-flow integrity, and code diversification. Our
evaluation reveals a number of interesting findings, which are

currently not well established in the community. We show
that MPX—a recently added feature in Intel CPUs for check-
ing pointer bounds—can be repurposed as a replacement to
SFI for shadow stacks and other control-flow defenses with
acceptable overhead (up to 7.5% vs 21.6% for SFI). Our ap-
proach is to rely on a new design where only a single bound
check is required, making MPX much more efficient than
its normal use case of double bounds checking—rapidly dis-
missed by practitioners for its exorbitant overhead [53]. On
the other hand, we show that for sparse instrumentations such
as heap protection, isolation techniques based on features
such as VMFUNC are more efficient (5.5%).

To summarize, our contributions are:
• An analysis of recent security defenses, demonstrating

their vulnerability against information leakage attacks and
stressing the fundamental cause of their weakness: lack of
deterministic isolation for safe regions,

• A survey of a number of recent (Intel) hardware features
and a general design that allows for such features to be
used for memory isolation.

•
MemSentry, the first comprehensive and self-contained
deterministic memory isolation framework, which allows
users to benchmark these hardware features on any plat-
form and to strengthen existing defenses for additional
protection.

• An evaluation of MemSentry and the various hardware
features in different scenarios, ranging from control-flow
protection to sensitive user data protection. Depending
on the underlying defense, we can protect safe regions
with a 1.1% overhead in the best case and with a 2.8% (in-
tegrity) or 14.7% (integrity and confidentiality) overhead
in the worst case. Our results also provide guidance on
how to use different hardware-supported techniques on
commodity hardware.

2. Memory isolation in review
In this section we give a short introduction of deterministic
and probabilistic isolation. Later on, we review some repre-
sentative defenses that rely on strong isolation for countering
exploitation. Finally we discuss the conditions under which
probabilistic isolation fails.

2.1 Deterministic vs probabilistic isolation
Modern operating systems allow processes to run isolated
from each other. Each process has its own virtual address
space, and cannot normally interfere with other processes.
However, many systems rely on further isolation inside the
running process: certain parts of the process (safe regions)
should be protected from the rest of it.

Isolating certain parts within a running process is com-
monly referred to as SFI [65]. Depending on the isolation
required, implementations may vary, but the basic concept
is simple. The isolated part of the process must be compiled
masking read and/or write operations, so that all are con-

fined to a given memory range. Any access outside this range,
which defines the boundaries of the isolation, is not permitted.

Instrumenting all these operations can be expensive. In
32-bit x86 architectures, where segmentation is available, iso-
lated parts can be placed in different segments [28, 65, 70].
For example, a defense could create a second segment with a
higher limit, and place its sensitive data in the high part. Refer-
encing this isolated part can be done only by correctly setting
the segment registers, and not by simply overwriting accessi-
ble memory. Enforcing isolation by means of SFI, using full
segmentation or by instrumenting read/write operations, is
what we refer to as deterministic isolation. Deterministic iso-
lation guarantees that the isolated part cannot access anything
outside the isolation border. An alternative to deterministic
isolation is probabilistic isolation, which we can realize using
information hiding. Rather than truly isolating them, infor-
mation hiding hides the sensitive parts of a running process
in a large (64-bit) virtual address space, while removing all
references to them from the rest of the process.

2.2 Defenses that rely on isolation
Many defense systems for countering software exploitation
require a part in memory isolated from the vulnerable process
itself. If this part is compromised the defense is rendered
useless. Since deterministic isolation is considered expen-
sive in 64-bit systems—for instance because of the lack of
segmentation—all of the following systems are realized using
information hiding. For better presentation, we have divided
the systems in four distinct categories:

Code diversification Code reuse attacks rely on creating
a sequence of gadgets: small pieces of the original code
that an attacker jumps over to create the desired code. For
countering such attacks, code diversification destroys any
prior knowledge of code locations, so that locating gad-
gets is no longer deterministic. Diversification can be real-
ized via function/basic-block permutation [66], fine-grained
ASLR [30], opcode permutations [54], or instruction-layout
randomization [35]. Unfortunately, memory-disclosure vul-
nerabilities render all these mechanisms ineffective [58]. An
additional defense against memory disclosure is run-time re-
randomization [15, 30, 67], which first diversifies programs
at function or basic-block level at compilation or at load time,
and then periodically remaps the code to different addresses.

For example, Isomeron [22] and Oxymoron [3] consis-
tently maintain offsets which indicate the distance between
the currently mapped code and newly remapped code. By
adding these offsets to all branch targets, they properly divert
the control flow to the newly remapped code. However, if an
attacker is able to leak the offsets before remapping is done,
they can predict the address of the newly remapped code
and bypass the protection. To protect these offsets Isomeron
uses a shadow stack-like structure of recorded decisions, and
Oxymoron uses an indirection table called the Rattle table.
Isolation of these components is crucial. In a similar fashion,

Defense Vuln. Isolation Instrumentation
points

r w Prob. Det.

CCFIR
p p

Indirect branches
O-CFI

p p
Indirect branches

Shadow Stack
p p

call/ret
StackArmor

p p p
call/ret

TASR
p p p

System I/O
Isomeron

p p p
Indirect branches

Oxymoron
p p

Code page across edges
CPI

p p
Memory accesses

CCFI
p

Memory accesses
ASLR-Guard

p p p
Memory accesses

DieHard
p p p

malloc/free
Readactor

p
Indirect branches

LR2 p
Mem. accesses & ind. branches

Table 1. Defense systems that are based on memory isolation.
Shown are what vulnerabilities they protect against: reads (r)
and/or writes (w), what type of isolation they provide (proba-
bilistic or deterministic) and where they insert code.

TASR [7] maintains a list of activated code pointers. When
remapping occurs, the system remaps these code pointers to
point to the newly mapped code. Again, isolation of the list
of code pointers is essential, since the attacker could first leak
the list of code pointers and then replace them to bypass the
remapping entirely.

Control-flow integrity Unlike code diversification, which
hides the code space from attackers, control-flow integrity [1]
provides more deterministic protection via explicit checking
of indirect-branch targets at runtime. CFI instruments every
indirect branch to ensure that it can reach only the intended
target set as approximated through static analysis. Depending
on the number of targets sets, we can classify CFI as either
coarse-grained or fine-grained. Coarse-grained CFI [49, 70,
73] supports no more than two or three (large) target sets,
making it vulnerable to attacks that construct malicious
payloads out of legitimate targets [10, 21, 31]. Fine-grained
CFI [20, 25, 63], on the other hand, supports more target sets
but also typically introduces more overhead.

Researchers have combined code randomization with
coarse-grained CFI to strengthen it, but doing so also in-
troduces an additional component, which must be protected.
For example, CCFIR [71] generates code stubs for indirect
branches, which it places randomly in its springboard regions,
while O-CFI [48] employs a so-called BLT table. In both
cases, isolation of these structures is essential.

Code-pointer separation An attacker can hijack the control
flow of a program by corrupting a code pointer. One way to
prevent such attacks is to store all sensitive code pointers
in a well-isolated region of memory. For example, return
addresses stored on the stack are high-value targets, and
researchers have proposed shadow stacks to protect them
from corruption [19, 25, 40]. By storing all return addresses
in the isolated “shadow stack”, separated from the regular
stack, simple stack smashing attacks are no longer possible.

To overcome the problem of leaking the location of the
shadow stack, StackArmor [14] allocates individual stack
frames at each function call at random addresses to keep
the information leakage attacks from expanding to other
stack frames. Alternatively, code-pointer integrity (CPI) [40]
introduces a safe region to store both the code pointers and
their related metadata, critical to its security.

Another approach is to protect pointers using encryption.
Following the idea of PointerGuard [17], which applies a
xor operation on all pointers with secret keys to prevent
buffer overflow attacks, CCFI [44] relies on Intel AES-NI
instructions to encrypt/decrypt code pointers. The AES keys
are stored in dedicated xmm registers. Since CCFI introduces
a large overhead (3.5x for SPEC 2006), ASLR-Guard [42]
proposes a more lightweight encryption scheme which relies
on xor instructions. A preallocated key table (AG-RandMap)
stores different xor keys for each entry, making lookups
via code pointers efficient. Moreover, by using different xor
keys, ASLR-Guard provides stronger encryption compared to
PointerGuard, with less overhead. Similar to many previous
protections, it is essential to isolate the AG-RandMap not just
against information disclosures, but also against writes.

Sensitive non-control data Besides the danger of control
data attacks, non-control data can also be security sensitive.
Examples include sensitive configuration data, user data, and
so on [12]. Such data usually resides on the heap and is
therefore vulnerable to information leakage and memory
corruption attacks. DieHard [6], and follow-ups [51], address
this problem by designing a (probabilistically) safe memory
allocator, resilient to heap-based memory corruption.

2.3 Threat model
We assume a defense system (see Section 2.2) protecting a
vulnerable process against code reuse. The attacker holds
an arbitrary read and write primitive, but code reuse is not
effective due to the defense system in place. Assuming the
safe region is hidden and not isolated, the attacker can carry
out the attack in two phases. First, a safe region, important
for the defense (e.g., the safe region of CPI [40]), must be
revealed using one of the many available techniques [26,
29, 32, 36, 52]. Once the attacker knows the safe region, the
defense can be bypassed, and, at this second phase, code reuse
can be effectively launched. MemSentry essentially stops the
attack at the first phase, protecting the defense system in
place, and consequently the protected program. Note that at
this point, code reuse is still not possible and MemSentry

cannot be attacked by exploiting vulnerabilities and chaining
ROP gadgets: executing any ROP gadget can be done only
once the defense is bypassed. Finally, we assume that the
code of MemSentry is trusted and implemented correctly.

3. Deterministic memory isolation
From Section 2, it should be clear that memory isolation is
critical for many defenses and that their reliance on informa-

Instrumentation
points

Isolated data

Memory isolation
technique

User
Passes

Memory
Isolation
Passes

Optimizer

Dune sandbox
(optional)

LLVM Passes
IR LLVM

Parser

Binary

Sources

Figure 1. Overview of MemSentry’s framework. As an
LLVM pass it will transform the IR, depending on the user-
provided parameters, resulting in an instrumented binary.
The resulting binary can optionally be executed in the Dune
sandbox to allow for process-level virtualization (e.g., for
VMFUNC).

tion hiding is wholly insufficient. In this section, we outline a
design for easily-applicable deterministic memory isolation.
This design can be applied to many existing defenses and
abstracts away the details of the underlying features being
used. Thanks to our generic design—instead of the ad-hoc
solutions of the past—users can now easily swap out different
isolation techniques, for instance depending on availability
of such features on commodity processors.

We categorize deterministic memory isolation solutions in
two groups: address-based and domain-based. In the former,
the address space is split into partitions and memory accesses
are masked to only access the allowed partition. Domain-
based isolation does not explicitly force memory accesses to
go to a certain partition. It instead defines areas in the address
space that are completely inaccessible and can be toggled
on or off, making them only temporarily accessible to any
instruction in the program. One can apply either of these
memory isolation categories to a defense system given three
sources of information: (a) the safe region(s) of sensitive data
(isolated data), (b) the instructions of the program that are
allowed to access sensitive data (instrumentation points), and
(c) the preferred memory isolation technique.

The remainder of this section discusses this design, start-
ing with the three inputs required, followed by an overview
of our deterministic isolation techniques based on commodity
hardware features. Figure 1 shows an overview of MemSen-

try, which implements our design using LLVM, allowing it
to easily be applied on top of different systems.

Isolated data In general, the sensitive data of a program
should be deterministically isolated. Such data may contain
cryptographic keys, cookies, access-control metadata, and
so on. Additionally, defense systems often contain metadata
used internally, which must remain protected. For example,
a system may incorporate a safe region containing sensitive
code pointers that should not be overwritten or a redirection
table which should not be read by other parts of the process.

The effort required to locate the isolated data depends on
the particular application. For some defense systems, this is
trivial; the memory range occupied by a shadow stack, for
example, can be easily determined and isolated. On the other
hand, a memory allocator may store sensitive metadata in
several places. In that case, modifying the allocator requires
additional effort. Systems that are already based on proba-
bilistic isolation can always be enhanced to use deterministic
isolation, since they already contain a well-defined part that
needs to be hidden from the rest of the process.

Instrumentation points We refer to the instructions or code
regions that need access to sensitive information as instru-
mentation points, as every access has to be instrumented to
be permitted. Depending on the application, locating and an-
notating the code that operates on sensitive data can be trivial
or more challenging. For instance, for a typical shadow stack,
only the call and ret instructions are allowed to read and
write the sensitive data—in this case an isolated stack contain-
ing the return addresses. As another example, consider secure
heap allocators such as DieHard [6]. Here the instrumentation
points are all calls to the allocator, such as malloc and free. In
both of these cases, locating and annotating the instrumenta-
tion points is trivial. However, more problematic cases exist.
For example, CPI [40] instruments all read and write opera-
tions to code pointers. Inferring all these operations requires
points-to analysis and is subject to issues with the accuracy
of the analysis. Even in this case, however, determining the
set of instrumentation points is already a requirement for the
defense itself.

Isolation techniques Finally, one of the many isolation
techniques must be chosen to guarantee full safe region
isolation. This can be realized using different hardware
features available on x86-64. The best choice for the isolation
technique depends on the nature of the application. In the
following sections, we first detail each of the supported
isolation techniques and then discuss the trade-offs among
different selections (Section 6.3).

Usage From the perspective of a defense developer, Mem-

Sentry is easy to use. The developer includes the MemSentry

pass to run after the defense pass at compilation time, and
adds a static library during linking. The developer then allo-
cates the safe regions using saferegion alloc(sz), which
is part of the static library. For the general case where de-
fense passes insert calls to functions at certain points, these
functions should be annotated so they can access the safe
region. For the common case where these are contained in a
static library, we have included a pass to automatically create
these annotations. For more general instrumentation, defense
passes can use the function saferegion access(ins) for ev-
ery instruction that needs access to the safe region. Such an
instruction can be a memory access, or for example a call to
an intrinsic. The MemSentry pass will run afterward and use

the annotations, implemented as LLVM metadata, to insert
the correct isolation.

3.1 Domain-based isolation
Domain-based solutions split the process operation into
multiple domains, where a domain can either be active
(accessible) or inactive (triggering faults when accessing
data specific to this domain). Domains can contain multiple
(smaller) portions of the address space, and are activated
using special instructions (which can thus not be triggered by
an attacker only equipped with a read/write primitive). For
simplicity, we assume a model of two domains: the (default),
nonsensitive domain, and the sensitive domain containing
only the sensitive data. Whereas the former is always active,
the latter is only enabled when the program accesses isolated
data. This model makes it easier to reason about and compare
different implementations, but can be extended into multiple
and/or disjoint domains, depending on the technique.

For 32-bit x86, segmentation would fall in this category.
Sadly, this does not work in x86-64 as segmentation has
effectively been removed. Although the fs and gs selectors
still exist, they must point to a location in the accessible
address space. We also do not discuss isolation based on
traditional paging (optionally sped up using the PCID feature)
as this would require intrusive changes to the kernel itself;
we aim for a widely deployable and easy to use framework.

Note that, as discussed in Section 2.3, we assume the
memory isolation works in conjunction with existing defense
solutions. Therefore, when protecting such systems we do
not require additional domain-switching logic. However, if
arbitrary program data should be protected, more complex
domain-switching is required [41, 57].

EPT switching via VM functions (“VMFUNC”) Intel
CPUs include hardware-accelerated virtualization support,
called VT-x (or VMX). With hardware virtualization, the
host can run several guests efficiently, without emulating
them. Two features that can speed up switching between
VMs are the virtual-processor identifier (VPID) and extended
page tables (EPT). The former adds tagging information for
the TLB, whereas the latter adds a second paging structure.
This EPT maps guest-physical to host-physical addresses,
that is, physical addresses obtained in the guest via normal
page tables are then looked up in the EPT to determine the
real physical address. Normally, switching page tables (both
normal and extended ones) is a costly operation that only
the kernel and hypervisor (respectively) can invoke, making
swapping pages in and out impractical. However, with the
introduction of VM functions, the guest can invoke several
specialized functions (pre-programmed in the CPU) which
previously required intervention of the hypervisor. The only
VM function currently present is EPT pointer switching,
which allows the guest to efficiently switch its entire EPT.
The hypervisor sets up a list of EPTs, and the guest can then
switch between these on its own, selecting the active EPT.

To use these features for memory isolation, we maintain
two EPTs, both containing all normal (i.e., non-sensitive)
page mappings. However, the mappings for the sensitive data
are only present in the second EPT, which is only active when
the guest requires access to this data. Thus, we can achieve
memory isolation by switching between the normal and
sensitive EPTs, representing the nonsensitive and sensitive
domains respectively. By inserting vmfunc calls around the
instrumentation points, the pages mapped in the secure EPT
can be used only by authorized instructions, and thus forms
the sensitive domain.

Unlike prior vmfunc-based solutions, this solution can also
function in a self-contained and easily deployable manner by
using process-level virtualization [5], as is used in MemSen-

try. Here, the hypervisor only manages a small VM with the
corresponding process running in it, which avoids the over-
head and complexity of running the entire operating system
and program in a VM. This is also less intrusive than modify-
ing the hypervisor. This aspect is, however, not fundamental
to our design; one could also modify an existing hypervisor
(such as KVM) to support this.

MPK Memory protection keys will be a feature available
in future Intel processors.1 With MPK, every page belongs to
one of 16 domains, determined by 4 bits in every page-table
entry (referred to as the protection key). For every domain,
there are two bits in a special register, named pkru. These
bits denote whether pages associated with that key can be
read or written. While only the kernel can change the key
of a page, reading and writing the pkru register is possible
from user-space using the rdpkru and wrpkru instructions
respectively.

Isolation can be enabled using MPK by placing the sensi-
tive data in pages that have a particular protection key, form-
ing the sensitive domain. An appropriate instrumentation
enables reads and/or writes to the data by setting the access-
disable and write-disable bits, respectively, using wrpkru. As
long as these bits are unset, the sensitive domain is accessible.
By setting the bits back, the sensitive domain is disabled,
making only the nonsensitive domain available.

AES-NI encryption (“crypt”) Where the previously dis-
cussed domain-based isolation techniques rely on unmapping
the sensitive data when it should not be accessed, an alterna-
tive is to instead encrypt it in-place until it is needed. In order
to speed up AES encryption, Intel has introduced dedicated
instructions, called AES-NI. This instruction set accelerates
the basic blocks of AES: there are functions for performing a
single round of encryption and for generating the round keys.

SGX The recently introduced Intel SGX extension can also
provide domain-based isolation, even though it is intended
for more far-reaching isolation. SGX allows applications
to create enclaves, separated compartments of code and

1 At the moment of writing, Intel has published a full specification [37] on
MPK but has not yet announced a processor supporting it.

data. The processor automatically encrypts these enclave
compartments, preventing the application itself and even the
operating system and hypervisor from reading the enclave’s
data. This allows for trusted execution in potentially hostile
environments, such as cloud infrastructure; clients can upload
an encrypted program to a cloud provider, and be guaranteed
that it ran correctly. When enclaves are created, the OS sets
up the binary blob that should be loaded and the mappings
of the enclave, after which it finalizes the enclave. Once an
enclave is finalized the application can perform calls into the
code of the enclave (ECALLs) via pre-defined entry points.
Similarly, the enclave can perform calls outside to the enclave
(OCALL), for instance to perform I/O. It is important to note
that currently the mappings of the enclave are fixed: no new
memory can be allocated to the enclave.

We can apply our domain-based isolation design using
SGX by creating an enclave containing the sensitive data and
all the code required to access/modify that data. We can thus
switch domains by switching execution to the enclave via an
ECALL, assuming all code that touches sensitive information
can be extracted and combined into the enclave.

However, this approach is currently markedly inferior to
the other isolation solutions which we present in this paper.
First and foremost, the overhead is much larger than other
solutions, as shown in Table 4. Decomposing the application
into the domains (the untrusted code and the enclave) is also
far less practical: the actual code touching sensitive data must
be present in the enclave, whereas with other solutions we
simply trigger the domain switch. All sensitive data must be
allocated when the enclave is created, and is limited in size,
adding more complications in many cases. Finally, deploying
this on-the-fly would be more challenging as an Intel-issued
signing key has to be used on the binary for the enclave, and
SGX is not yet widely supported by hardware. Processor-level
compartmentalization is definitely a promising development,
but SGX itself is unsuitable for efficient memory isolation.

3.2 Address-based isolation
Address-based solutions split the address space into two or
more partitions, instrumenting the program to allow only
certain instructions to access a particular partition. This
means that every load and store instruction is instrumented
with the partition(s) it is allowed to access. For simplicity, we
again assume two partitions (the sensitive partition and the
nonsensitive partition), similar to domain-based isolation.

The difference between address-based and domain-based
isolation is that for address-based techniques all pointers are
forced into a partition all the time, whereas for domain-based
techniques a domain is activated, giving all loads and stores
access to it. Additionally, partitions split the address space
at a certain point (e.g., everything above 64 TB is sensitive)
whereas domains are more flexible.

Traditional SFI (“SFI”) One straightforward way of
achieving address-based isolation is by using the classic

Isolation Instrumentation points Application

Address- Loads Code randomization
based Loads CFI variants

Stores ShadowStack
Stores CPI
Both + points-to info Program data

Domain- call + ret ShadowStack
based Indirect branches CFI variants

Indirect branches Layout randomization
System calls Layout randomization
Allocator calls Heap
Points-to info Program data

Table 2. MemSentry applies to a range of different defense sys-
tems. Some have different variants (e.g., CFI) and the specifics
may differ. Nevertheless, the framework is generic and covers
various types of applications through different isolation types.

SFI. This can be done at the bit level using software-only
instrumentation, requiring no additional hardware support.
For example, by storing all sensitive data in the upper half of
the address space (forming the sensitive partition), the higher
bits in a pointer are only set when accessing this sensitive
data. By masking the instruction before every non-allowed
load and store (using a simple and instruction), we can deter-
ministically ensure such instructions cannot access sensitive
data. While this approach is widely deployable, it may not be
the most efficient solution in many applications of interest (as
shown in our evaluation in Section 6). Another concern is that
traditional SFI cannot deterministically detect invalid mem-
ory accesses, but only prevent them, as the masked pointer
might still be a valid (different) pointer in the nonsensitive
partition.

MPX Intel introduced a new hardware feature that allows
for efficient bounds checking, called MPX, in the Skylake
CPU series. With MPX, the programmer can create and
enforce bounds, specified by two 64-bit addresses specifying
the beginning and the end of a range. Furthermore, new
instructions are introduced to efficiently compare a given
value against the bounds, raising an exception when the value
does not fall within the permitted range. For efficiency, four
bounds can be stored into dedicated registers (bnd0 to bnd3).
When more bounds are required, they are stored in memory,
and the bound registers serve as a caching mechanism. It
should be noted that while the bounds-checking itself is
very efficient, the usage of many bounds is not. For instance,
GCC’s implementation of MPX buffer checking frequently
spills bounds registers to memory.

For isolation, the address space is partitioned using MPX
bounds. By defining a single bound and adding a single
bounds check before every memory access, we effectively
verify that every pointer used by the program is in the correct
partition. By not adding such checks to instructions which
are allowed to touch sensitive data, we can enforce that
instructions only access memory in the nonsensitive partition.

Isolation technique Maximum domains Granularity

SFI 48 –a

MPX 4b byte

MPK 16 page
VMFUNC 512 page
AES Infinite 128 bytes
a Depends on least significant bit of mask.
b Infinite when also using memory besides bound registers.

Table 3. Limitations of memory isolation techniques.

4. MemSentry applications
In this section we discuss how our design, and in particular
MemSentry, offers deterministic isolation to existing systems,
such as the ones presented in Section 2, as well as other
concerns about the applicability of the framework.

Table 2 summarizes the type of isolation and instrumen-
tation points required for some representative systems. For
address-based solutions, instrumented memory accesses can-
not operate on protected data, while non-instrumented ones
can freely read or write to the process address space. For
domain-based solutions, the reverse approach is followed.
Instrumentation is inserted for accessing sensitive data. For
most defense systems, sensitive data is only accessed by new
instructions (part of the instrumentation). It is therefore clear
which instructions are allowed to touch sensitive data, and
no further instrumentation by MemSentry is required. For
in-program data such as private keys this is not the case, and
MemSentry has to rely on points-to information.

For instance, in a heap protection system such as DieHard,
the metadata is only used by the allocator. Therefore, other
parts of the program and libraries should not be able to access
it. Similarly, access to a shadow stack occurs during call and
ret instructions. Systems based on a shadow stack instrument
these instructions therefore it is trivial for MemSentry to
determine where domain switches should take place or what
memory instructions should not be instrumented for address-
based approaches. In this case, only memory stores have to
be protected, since the defense is based on the integrity and
not the confidentiality of the shadow stack. On the other hand,
when protecting private keys, confidentiality is important.
Therefore, both reads and writes should be prevented from
accessing the cryptographic keys.

Another concern when employing memory isolation is
separation of sensitive data from the rest of the program. For
many defense systems, separation is enforced by construction.
As an example, the code space (a sensitive region in many
solutions) is already separated from normal program data in
a traditional address space organization. However, arbitrary
program data may need protection. In some cases sensitive
data is stored in a global data structure, or embedded in an-
other (non-sensitive) one. Table 3 shows the theoretical mini-
mum granularity supported by each technique implemented
in MemSentry for storing sensitive data. For example, the
minimum size of isolated data when using VMFUNC is one

memory page. Separation of sensitive and non-sensitive data
is carried out by the defense system itself, and MemSentry is
employed only for enforcing the desired isolation technique.

As an example, we could apply MemSentry to SafeS-
tack [40, 61], a shadow stack implementation used in produc-
tion, with minimal effort. This only requires instrumenting
all memory writes, and ensuring the normal (safe) stack was
located separately in the address space.

5. Implementation
In this section we describe some of the details of using
the different hardware features in practice, and present our
solutions for MemSentry.

5.1 VMFUNC
In order to minimize the impact of deploying EPT switching,
we deploy this technique (and thus the VM and hypervisor)
per process instead of system-wide. To do this, we use a
modified version of Dune [5], which allows a single process to
run in a VM by running a stripped down version of the KVM
hypervisor per process, and a small library-OS to manage
the state of the VM. This requires only the (relatively small)
Dune kernel module to be loaded, and the remainder of the
system does not experience any performance impact.

For MemSentry, we modified Dune to maintain multiple
copies of the EPT, which it normally fills in an on-demand
basis when an EPT fault occurs. We added a hypercall so
that the hypervisor can mark certain mappings as private
to only the active EPT, allowing for secret pages to be
isolated to a single EPT. The program itself is instrumented
to make hypercalls to inform the hypervisor about these
secret mappings, and further inserts vmfunc calls to switch
domains where necessary. The rax and rcx registers are used
to specify the VM function to invoke and which EPTP index
to use (respectively). By using the sandbox application that
is part of Dune, the program runs transparently in the guest
environment, with the sandbox taking care of the kernel-
level tasks in the VM (such as interrupts and page table
management). This technique inherently requires access to
certain hardware features such as EPT, VPID and VMFUNC,
which might not be implemented in virtual environments (i.e.,
nested virtualization support is required). However, this is not
fundamental to using VMFUNC for isolation, as one could
also implement the EPT management in KVM itself.

5.2 MPK
As MPK is not yet available in any CPU at the time of
writing, we have implemented an approximation that, while
not offering any protection, gives performance results and
allows for comparison with other techniques.

Normally, an application reads the pkru register using
rdpkru, (un)sets some bits in the result and writes it back
using wrpkru. Afterwards, memory accesses should use the
new permissions as set in pkru. To simulate this, we copy

an xmm register into a general purpose register, set bits in the
result, and move it back to the xmm register. This approximates
the cost of reading and writing pkru, as both the xmm registers
and pkru are special registers. In particular, xmm registers are
the slowest available registers, and so our implementation
reasonably approximates the performance overhead of access-
ing pkru. Additionally, we perform an mfence instruction to
simulate the cost of changing permissions and the probable
serialization caused by writing to a control register. MPK
itself needs to perform this as well, because memory accesses
cannot be reordered around the wrpkru calls.

Usage of MPK clobbers rax, rcx and rdx (simulated using
inline assembly), possibly causing compiler register spilling.
Since MemSentry runs as a normal LLVM pass, variables are
not yet mapped to registers, as this register allocation happens
at a later stage. By marking registers as clobbered, LLVM
optimizes register usage to minimize spilling to memory.
However, both rcx and rdx are used as function parameters,
and are thus often expensive registers to clobber.

5.3 Encryption
MemSentry implements encryption using Intel AES-NI with
128-bit keys. This requires 11 rounds for both encryption
and decryption, and by extension 11 different round-keys
(with one being equal to the overall key). Ideally, none of the
keys are ever spilled into memory, as an attacker could poten-
tially sniff memory and break the encryption.2 Furthermore,
storing keys in memory is suboptimal performance-wise, as
additional memory accesses are introduced.

While pinning certain registers for storing these keys is
a solution, as used by CCFI [44], we deemed this approach
impractical. First of all, it requires recompilation of all system
libraries to mark these registers as reserved, potentially
affecting system-wide performance. Secondly, MemSentry

requires distinct keys for both encryption and decryption (an
encryption round-key can be used to calculate the decryption
round-key using aesimc), and there are not enough xmm

registers available to hold these keys. Storing only the primary
key (which can be used to generate the round-keys using
aeskeygenassist) requires fewer xmm registers but employs
costly keygen instructions for every domain switch.

MemSentry stores the keys in the upper part of the ymm

registers, which are not used by any of the libraries distributed
on Debian and Ubuntu installations. This is more efficient
and secure than storing the keys in memory. While this was
not necessary for our setup, the compiler can also easily be
modified not to use this register with minimal impact [44].

5.4 MPX and SFI
Figure 2 shows an example of MemSentry’s instrumentation.
We can see that the calculation of the pointer is separated
from the store (the single mov becomes a lea and a mov). For
2 We could hide the key in memory using one of the other memory isolation
techniques, but this would defeat the purpose of using encryption in the first
place.

; Store value of rdi in mem

mov %rdi , 0x8(%rbx)

(a) Original

; Load pointer into rcx

lea 0x8(%rbx), %rcx

; Faults if rcx is above bnd0

bndcu %rcx , %bnd0

; Pointer in rcx is now verified

mov %rdi , (%rcx)

(b) MPX

; Load pointer into rcx

lea 0x8(%rbx), %rcx

; Mask pointer to be below safe area

movabs $0x00003fffffffffff , %rax

and %rax , %rcx

; Pointer in rcx is now verified

mov %rdi , (%rcx)

(c) SFI

Figure 2. Code transformations caused by our address-based instrumentations. In both cases the calculation of the address and
the store have been split (lea + mov). For MPX, the pointer is checked to be below 64 TB, whereas for SFI it is modified to
always be below 64 TB (although this split is arbitrary in both cases).

SFI, we load the mask and use the and instruction to apply
it, using the result for the store. This will force the memory
access to always be below 64 TB, although the address space
split can be anywhere in the 128 TB address space.

For MPX we insert a single bounds check, which will
trigger a fault if the value of rcx is above the upper bound of
bnd0, which we set to 64 TB during program initialization.
Because we partition the address space, instead of relying
on more fine-grained bounds, only the upper bound has to
be checked. The lower bound of the nonsensitive partition
is 0, and given addresses cannot be negative, a check would
be useless. This saves both instrumentation, and slightly
increases performance. This implementation does assume
the bnd0 register is not used by the application itself. As
MPX is currently only used by compiler passes this is a
reasonable assumption, but if an application were to use MPX
itself overheads would be larger. Note also that MemSentry

enables the bndpreserve flag and, therefore, MPX does not
reload its bounds (from memory) at any point. Without this
flag set, the CPU will load the bounds registers from memory
for every branch instruction without a BND instruction prefix.

5.5 LLVM & points-to analysis
As our instrumentation is performed by an LLVM pass, we
can make use of its optimization passes. For instance, in the
IR that we instrument LLVM will have eliminated all regis-
ter spilling to the stack, thus making sure we only see (and
instrument) necessary memory accesses. Afterwards, during
register allocation in the backend, LLVM might generate vari-
able spills to the stack. These instructions access a fixed place
in memory and thus do not need isolation instrumentation.

As shown in Table 1, many security defenses instrument
solely branch instructions or system calls. MemSentry can
trivially infer the instrumentation points in these cases. How-
ever, protecting arbitrary information requires further anal-
ysis, often called points-to analysis, for discovering which
instructions operate on which data. In LLVM this can be done
statically using the data-structure analysis (DSA) pass.

While MemSentry supports DSA, we noticed (similarly to
other researchers [62]) that DSA is overly conservative, often
yielding undesirable results where most memory accesses are

classified as being able to touch sensitive data. We thus also
looked at a run-time solution for dynamic analysis, in order to
approximate an ideal (non-conservative) static analysis only
for evaluation purposes. First, the program is prepared with
initial instrumentation, which allows later analysis passes
to map assembly instructions back to IR instructions. Then,
the program is run with a PIN pass [43], which records all
accesses to objects per instruction. The output of this run
can then be fed back into the instrumentation pass as points-
to information. The dynamic analysis itself is much slower,
and there is a high chance of under-approximating memory
accesses, since only accesses related to particular inputs (i.e.,
execution paths) are recorded.

We stress here that, even though points-to analysis is an
open problem, it does not hinder MemSentry in most cases,
where defenses already determine the instrumentation points.
In cases where arbitrary data should be protected, any points-
to analysis pass can easily be incorporated in the framework.

6. Evaluation
In order to evaluate the applicability and trade-offs between
the use of different techniques, we evaluate combinations
of isolation mechanisms and instrumentation points that are
supported by MemSentry on the SPEC CPU2006 benchmark
suite. SPEC is very memory and CPU intensive, and thus the
overhead for I/O bound applications such as servers will be
lower. All benchmarks were performed on a machine with an
Intel i7-6700k processor clocked at 4GHz, with 16GB DDR4
RAM. We used Ubuntu 14.04 with Linux 3.19, recompiled
to enable MPX support. However, the result for SGX shown
in Table 4 was performed on the same system equipped with
the similar E3-1240v5 processor at 3.5GHz, as not all i7’s
include SGX support.

In the rest of the section, we first look at microbenchmarks
of all previously discussed techniques, and analyze sources
of overhead. Then, we compare the performance overhead of
address and domain-based techniques, and show real-world
results for SafeStack. Finally, we discuss trade-offs between
the two designs, and all the available hardware features.

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

eal
II

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tpp

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

ge
om

ean
1

1.1

1.2

1.3

1.4

R
un

-ti
m

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

MPX-w SFI-w MPX-r SFI-r MPX-rw SFI-rw

Figure 3. SPEC overhead for instrumentating all stores (-w), loads (-r) and both (-rw) for SFI and MPX, showing MPX
introduced less overhead than SFI in most cases.

6.1 Microbenchmarks
The results of our microbenchmarks are shown in Table 4.
We looked at both the cost of memory operations and of our
isolation techniques, including some comparable operations.
These results serve as a comparison between different oper-
ations, and the overall real-world overhead might be lower
(e.g., due to pipelining optimizations) or higher (e.g., due
to higher TLB pressure). Results were gathered by timing a
tight loop of many iterations with the instruction, disabling
interrupts and other external factors wherever possible. Our
results are consistent with other sources [27, 38].

Memory operations are obviously highly dependant on
caching behavior, with spatially and temporally local accesses
being far more efficient. In practice the overall observed
latency might be lower, depending on the data dependencies.
These results give an idea of the cost of spilling registers,
which might add to the overhead of some techniques.

The cost of an and operation is highly dependent on what
is done with the result. When the result is not used, or used
as the destination of a memory write, its overhead is not
observable, most likely due to effects of pipelining and out-
of-order execution. However, when we use the result of the
and as a pointer for a memory load, its overhead does become
significant as this introduces a data dependency.

For MPX we observed a huge performance difference
between using a single bounds check, and performing a
full bounds check (i.e., checking both the upper and lower
bounds using bndcu and bndcl). The performance difference
is mainly because the second bounds check instruction is
delayed until the first one completes, whereas the first one
does not delay anything. Further experiments confirm this,
e.g., executing three bounds check instructions doubles the
overhead to ⇠1 cycle, compared to executing only two. Our
measurements thus show that in MemSentry (with a single
bounds check and 1 domain), MPX should be faster than
SFI in basically all cases, as the overhead of SFI might be
observed (when used for loads) whereas the MPX overhead

Instruction/operation Cycles

L1 cache access 4a

L2 cache access 12a

L3 cache access 44a

DRAM access 251

SFI (and, result used by load) 0.22
SFI (and, result used by store) 0
MPX (single bndcu) < 0.1
MPX (both bndcl and bndcu) 0.50
MPK (simulated) 0.42
vmfunc (EPT switch) 147
vmcall 613
syscall 108
SGX enter + exit enclaveb 7664
AES encryption and decryption (11 rounds) 41
AES keygen (10 rounds) 121
AES imc (9 rounds) 71
Loading ymm into xmm (11 times) 10
a From Intel [38], in practice these will vary due to access patterns,

out-of-order execution and pipelining.
b Time of performing an empty ECALL using the Intel SGX SDK for

Linux.

Table 4. Microbenchmarks for the latency of hardware pro-
tection features and related operations.

will stay consistently low. In cases where more domains
would be required (like GCC’s bounds checking) this would
no longer be true.

Our virtualization experiments, testing vmfunc and a hy-
percall (vmcall), show that the use of vmfunc is indeed much
more efficient than the old way of involving the hypervisor.
We show that the cost of a vmfunc is similar to that of a
traditional syscall.

Our AES results show that round-key generation is far
more expensive than fetching the round-keys from the ymm

registers. It also shows that calculating all required keys
for decryption (using aesimc 9 times) is far more costly
than extracting the normal round-keys (used directly for
encryption). While the cost of encryption and decryption
per chunk is the same, the initialization cost per block will
thus be higher for decryption.

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

eal
II

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tpp

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

ge
om

ean
1

5

10

15

28.27 20.79

R
un

-ti
m

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

MPK VMFUNC crypt

Figure 4. SPEC overhead for MPK, VMFUNC and crypt (on a single 128-bit chunk) when switching domains for every call

and ret instruction, simulating a shadow stack.

6.2 Real-world performance
For a more practical analysis, we run MemSentry on SPEC
CPU2006. We present numbers for each benchmark individu-
ally, and the geometric mean (geomean) over the set of all C
and C++ benchmarks.

As address-based techniques (SFI and MPX) must check
the pointers for every memory access, the instrumentation
points are different than those of domain-based techniques.
In order for address-based techniques to work, all memory
accesses in an application must be instrumented, with the
minor exception of those that are allowed access to sensitive
data. In Figure 3 we show the results for instrumenting all
read instructions, write instructions, and both reads and writes.
As we instrument all memory accesses indiscriminately,
these figures represent the worst-case scenario for these
techniques. However, as an application mostly deals with non-
sensitive data, there is in most cases no difference between
instrumenting all instructions, or all minus a few.

As discussed in Section 4, the results for instrumenting
only reads (MPX-r and SFI-r, geomean 12% and 17.1%) rep-
resent the overhead for CFI and code randomization defense
solutions, whereas those with only writes (MPX-w and SFI-w,
geomean 2.8% and 4%) indicate the overhead for protecting a
shadow stack. The results for both reads and writes (MPX-rw
and SFI-rw, geomean 14.7% and 19.6%) present a broader
(and worst-case) protection, and are applicable when protect-
ing arbitrary program data from disclosure and tampering,
such as private keys.

We can see that in almost all cases, MPX performs better
than SFI. Both instrumentations take very little time to
execute, as shown in Table 4. However, in the case of SFI
the instruction accessing memory has a dependency on the
result of the and, whereas for MPX the bndcl does not modify
the address. While for memory writes this overhead is not
noticeable, it causes delays for reads.

Figures 4, 5, and 6 present the results for domain-based
techniques. For VMFUNC we switch to a secondary, yet
identical, EPT. For crypt, we use AES-NI on a single chunk
(16 bytes), and retrieve all round keys from the upper parts of
ymm registers. Figure 4, which shows the results when domain
switches occur for every call and ret instruction, represents
the worst-case scenario of all of these, and shows the case
of protecting a shadow stack. Figure 5 presents a subset
of the previous results, where only indirect branches are
instrumented, corresponding to CFI and layout randomization
solutions. Finally, Figure 6 shows results for system calls. We
observed similar results for calls to the allocator.

Consistent with the microbenchmarks, MPK is the most
efficient of the three with a geomean of 130%, 34%, and 1.1%
for call-ret, indirect calls and system calls respectively. The
costs of crypt (with geomeans of 217%, 60%, and 22%) are
higher than might be expected, as not only must the data
be encrypted (in 128-bit chunks) but the keys must also be
copied into xmm registers before encryption can happen. The
costs for VMFUNC are generally the highest (with geomeans
of 357%, 82%, and 5.5%). Part of this overhead comes from
the process-level virtualization, where all system calls are
converted into hypercalls. This is especially noticeable for
syscall-heavy benchmarks, and not as much on SPEC [5].
For benchmarks that already heavily rely on the xmm registers,
crypt incurs a more significant performance overhead. This
is especially evident for several floating-point benchmarks
in Figure 6, where the encryption itself does not take much
time, but clobbering a number of xmm registers does.

While applying memory isolation to SafeStack [40], a
shadow stack implementation used in production and present
in Clang [61], we opted for address-based isolation based on
these results. SafeStack introduces no additional overhead
on its own, as it simply replaces all stack loads and stores
with accesses to the unsafe stack. We found that when ap-

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

eal
II

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tpp

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

ge
om

ean
1

2.5

5

7.5

10.61

R
un

-ti
m

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

MPK VMFUNC crypt

Figure 5. SPEC overhead for MPK, VMFUNC and crypt (on a single 128-bit chunk) when switching domains for every indirect
branch.

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

44
5.g

ob
mk

44
7.d

eal
II

45
0.s

op
lex

45
3.p

ov
ray

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
0.l

bm

47
1.o

mne
tpp

47
3.a

sta
r

48
2.s

ph
inx

3

48
3.x

ala
nc

bm
k

ge
om

ean
1

1.1

1.2

1.05

1.15

1.25

1.33 2.15 1.58 2.73 1.46 2.28

R
un

-ti
m

e
ov

er
he

ad
(n

or
m

al
iz

ed
)

MPK VMFUNC crypt

Figure 6. SPEC overhead for MPK, VMFUNC and crypt (on a single 128-bit chunk) when switching domains for every system
call.

plying MemSentry, SafeStack still introduced no additional
overhead, and the results were identical to Figure 3.

All previous results assume a very small safe region in
the case of crypt: a single native 128-bit (16 byte) value.
Further experiments showed that in this case, most of its
overhead is due to the initialization of round keys. Encryption
of larger sizes increases linearly on top of this initial cost.
However, we still observed an approximately 15x overhead
when protecting a region of 1024 bytes.

6.3 Discussion
In this section, we look at further trade-offs for the differ-
ent memory isolation techniques, evaluate the merits of each
approach and, combined with the performance figures, give
an overview of these techniques in practice. We hope this
will help future researchers with deciding between such tech-
niques, but we should note that all techniques are practical,
depending on the situation (e.g., an older processor).

For address-based isolation techniques, MPX has many
advantages over SFI. First of all, the performance of MPX is
higher in almost all cases. It also provides a more flexible way
of partitioning the address space, as bounds can be placed at
any point in memory. Additionally, MPX deterministically in-
forms the system of an invalid attempt, whereas with SFI the
masked pointer may still be valid (in the nonsensitive parti-
tion). On the other hand, the biggest downside of MPX is that
it requires a relatively new Intel CPU (Skylake architecture,
released 2015). MPX also becomes much less favorable when
many different domains are required, and because bounds
must continuously be spilled to memory. Furthermore, in a
situation with arbitrary bounds, where both upper and lower
bounds must be checked, the overhead also becomes worse:
our experiments showed it to be slightly worse than our SFI
results. However, SFI cannot support such a situation at all
without the need for far more expensive checks.

For domain-based solutions, we would expect MPK to
have much higher performance than alternatives, based on
our approximated benchmarks. However, the biggest issue
with MPK is that it has not yet been released, nor have
processors supporting it been announced. Until that time,
the choice remains between VMFUNC and crypt. The cost
of crypt increases linearly with the size of the isolated
domain, whereas the cost remains constant for VMFUNC.
This smaller granularity can also be an advantage: for smaller
data (1–2 128-bit chunks) crypto is generally faster, and it
does not require the data to be placed in separate pages.
On the other hand, VMFUNC requires both fairly recent
hardware (Intel Haswell or newer, available since 2013) and
a (relatively small) piece of privileged code on the host: a
modified hypervisor. AES-NI has been present in CPUs for
far longer, beginning with the Intel Westmere architecture in
2010, and might thus be more widely and easier deployable.
Finally, SGX, while an interesting technique useful for cloud
environments, is not practical for the relatively lightweight
isolation as discussed in this paper.

When choosing between addressing-based and domain-
based techniques, for MPX versus MPK, the optimal choice
primarily depends on how often domain switches occur in
practice (in other words, what portion of the instructions
executed access isolated data). When this happens frequently,
such as for every call and ret instruction, addressing-based
approaches are more favorable.

7. Related work
Software-fault isolation has been actively researched over the
past 20 years [25, 45, 65]. For instance, Native Client [56, 70]
compiles programs written in C/C++ to verifiable sandboxed
code, that run natively yet cannot execute arbitrary branches
or memory accesses. LR2 reduces SFI checks and achieves
execute-only memory (XoM) by instrumenting instructions
so that all pointers are masked [9]. Although LR2 targets
mobile devices and a particular application (resilient to
leakage code randomization), the SFI optimization can be
incorporated easily to MemSentry and implemented using
hardware features of x86-64 such as MPX.

In terms of hardware-based isolation techniques, a lot of
options exist across different architectures, many of which
could be implemented as part of MemSentry. For instance,
segmentation present in x86 (and dropped for x86-64) was
used as an easy way of isolating memory [28, 65, 70]. IS-
Boxing [23] uses instruction prefixes to bound load/stores
to a memory range, however, this significantly reduces the
available address space. Similar features are present in other
architectures, such as memory domains in ARM32 [74] (but
removed from modern AArch64), which work almost identi-
cally to Intel’s upcoming MPK feature for x86-64, except that
the domain permissions can only be modified in supervisor
mode. ARM also supports TrustZone, offering both a normal
and secure world which are completely isolated, leveraged

by TZ-RPK and Kenali [2, 59]. Usage of a trusted platform
module allows pieces of application logic to securely run, and
can leverage either hardware based solutions such as Intel
TXT [46] or software-based solutions [47]. Sanctum [16] pro-
vides SGX-like features in hardware for memory isolation.

Several systems have been proposed to prevent stealing
keys from memory [44, 55], including the use of hardware-
transactional memory [34]. AMD’s upcoming secure mem-
ory encryption (SME) encrypts all memory transparently, pro-
tecting it from outside analysis and cold-boot attacks. Secure
encrypted virtualization (SEV) expands this to allow for per-
VM memory encryption [39]. However, both SME and SEV
do not help against local memory exploits. Isolating complete
applications running in untrusted environments has been also
studied. For example, Intel SGX can be used to protect ap-
plications running in untrusted clouds [4, 72], while other
approaches are based on virtualization [11, 13, 41, 57, 69].
For instance, SeCage [41] offers domains that can be effi-
ciently switched between using vmfunc, similarly to what was
discussed in Section 3.1, and includes automatic application
decomposition using points-to analysis. Both the decomposi-
tion of software and the protection of domain switches has
been a major issue for such systems. Systems such as Readac-
tor [18] and Heisenbyte [60] similarly use the EPT feature of
VT-x to achieve XoM and destructive code-reads respectively.
Finally, entirely new hardware features have been proposed
to achieve memory isolation [64, 68].

We takes inspiration from a number of these approaches
in how to leverage hardware-features to provide memory
isolation. All of the aforementioned systems implement a
custom protection scheme, supporting only a single hardware-
feature, and often supporting only a single defense-system. In
contrast, we provide a more general form of memory isolation
on x86-64, and a general-purpose design supporting different
isolation techniques for defense systems.

8. Conclusion
In this paper we explored the importance of isolation in re-
alizing software defenses. We reviewed a series of systems
which rely on information hiding for securing some vital com-
ponent for their operation. We argued that such probabilistic
isolation is insufficient, and presented a design that can ap-
ply hardware features to provide deterministic isolation. We
introduced MemSentry, a framework that can easily provide
strong memory isolation to existing defense systems, and a
practical evaluation of such hardware features.

We believe that MemSentry is useful for the community,
since it provides a vital feature for many defense systems: the
ability to properly isolate sensitive data from the rest of the
process. Additionally, it helps further research towards this
goal by offering a platform for testing hardware-supported
isolation. MemSentry can be found at http://github.

com/vusec/memsentry.

http://github.com/vusec/memsentry
http://github.com/vusec/memsentry

Acknowledgments
We thank our shepherd, Andrew Baumann, and the anony-
mous reviewers for their valuable feedback. This work was
supported by the European Commission through project
H2020 ICT-32-2014 “SHARCS” under Grant Agreement
No. 64457 and the Netherlands Organisation for Scientific
Research through grant NWO 639.023.309 VICI “Dowsing”.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In CCS, 2005.

[2] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen. Hypervision across worlds: Real-time
kernel protection from the ARM TrustZone secure world. In
CCS, 2014.

[3] M. Backes and S. Nürnberger. Oxymoron: Making fine-grained
memory randomization practical by allowing code sharing. In
USENIX SEC, 2014.

[4] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with Haven. In OSDI, 2014.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In OSDI, 2012.

[6] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory
safety for unsafe languages. In PLDI, 2006.

[7] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi.
Timely rerandomization for mitigating memory disclosures. In
CCS, 2015.

[8] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est
Machina: Memory deduplication as an advanced exploitation
vector. In S&P, 2016.

[9] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
and A. R. Sadeghi. Leakage-resilient layout randomization for
mobile devices. In NDSS, 2016.

[10] N. Carlini and D. Wagner. ROP is still dangerous: Breaking
modern defenses. In USENIX SEC, 2014.

[11] H. Chen, J. Chen, W. Mao, and F. Yan. Daonity - grid security
from two levels of virtualization. Inf. Secur. Tech. Rep., 12(3),
2007.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In USENIX SEC,
2005.

[13] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-
shadow: A virtualization-based approach to retrofitting protec-
tion in commodity operating systems. In ASPLOS, 2008.

[14] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuf-
frida. StackArmor: Comprehensive protection from stack-
based memory error vulnerabilities for binaries. In NDSS,
2015.

[15] X. Chen, H. Bos, and C. Giuffrida. CodeArmor: Virtualizing
the code space to counter disclosure attacks. In EuroS&P,
2017.

[16] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX
SEC, 2016.

[17] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard:
Protecting pointers from buffer overflow vulnerabilities. In
USENIX SEC, 2003.

[18] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R.
Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical
code randomization resilient to memory disclosure. In S&P,
2015.

[19] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost
of shadow stacks and stack canaries. In ASIACCS, 2015.

[20] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A. R. Sadeghi. MoCFI: A framework to
mitigate control-flow attacks on smartphones. In NDSS, 2012.

[21] L. Davi, A. R. Sadeghi, D. Lehmann, and F. Monrose. Stitching
the gadgets: On the ineffectiveness of coarse-grained control-
flow integrity protection. In USENIX SEC, 2014.

[22] L. Davi, C. Liebchen, A. R. Sadeghi, K. Z. Snow, and F. Mon-
rose. Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming. In NDSS, 2015.

[23] L. Deng, Q. Zeng, and Y. Liu. ISboxing: An instruction
substitution based data sandboxing for x86 untrusted libraries.
In IFIP SEC, 2015.

[24] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bai-
ley, F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and
V. Paxson. The matter of heartbleed. In IMC, 2014.

[25] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In
OSDI, 2006.

[26] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi.
Missing the Point(er): On the Effectiveness of Code Pointer
Integrity. In S&P, 2015.

[27] A. Fog. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. Copenhagen University College of Engineer-
ing, 2016.

[28] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing
on the x86. In USENIX ATC, 2008.

[29] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz.
Enabling client-side crash-resistance to overcome diversifica-
tion and information hiding. In NDSS, 2016.

[30] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained
address space randomization. In USENIX SEC, 2012.

[31] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In S&P,
2014.

[32] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, ,
G. Portokalidis, C. Giuffrida, and H. Bos. Undermining
entropy-based information hiding (and what to do about it). In
USENIX SEC, 2016.

[33] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida.
ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[34] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting
private keys against memory disclosure attacks using hardware
transactional memory. In S&P, 2015.

[35] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. David-
son. ILR: Where’d my gadgets go? In S&P, 2012.

[36] R. Hund, C. Willems, and T. Holz. Practical timing side
channel attacks against kernel space ASLR. In S&P, 2013.

[37] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual. April 2016.

[38] Intel Corporation. Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual. January 2016.

[39] D. Kaplan, J. Powell, and T. Woller. AMD memory encryption.
Technical report, AMD, April 2016. URL http://bit.ly/

2gr5hQM.
[40] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and

D. Song. Code-pointer integrity. In OSDI, 2014.
[41] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting

memory disclosure with efficient hypervisor-enforced intra-
domain isolation. In CCS, 2015.

[42] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee.
ASLR-Guard: Stopping address space leakage for code reuse
attacks. In CCS, 2015.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation.
In PLDI, 2005.

[44] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières.
CCFI: Cryptographically enforced control flow integrity. In
CCS, 2015.

[45] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In USENIX SEC, 2006.

[46] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB
minimization. In EuroSys, 2008.

[47] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation.
In S&P, 2010.

[48] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and
M. Franz. Opaque control-flow integrity. In NDSS, 2015.

[49] B. Niu and G. Tan. Monitor integrity protection with space
efficiency and separate compilation. In CCS, 2013.

[50] B. Niu and G. Tan. Per-input control-flow integrity. In CCS,
2015.

[51] G. Novark and E. D. Berger. DieHarder: Securing the heap. In
CCS, 2010.

[52] A. Oikonomopoulos, C. Giuffrida, E. Athanasopoulos, and
H. Bos. Poking holes into information hiding. In USENIX
SEC, 2016.

[53] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fet-
zer. Intel MPX explained: An empirical study of Intel MPX
and software-based bounds checking approaches. arXiv, 2017.

[54] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the gadgets: Hindering return-oriented programming using in-
place code randomization. In S&P, 2012.

[55] T. P. Parker and S. Xu. A method for safekeeping cryptographic
keys from memory disclosure attacks. In INTRUST, 2009.

[56] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software fault
isolation to contemporary CPU architectures. In USENIX SEC,
2010.

[57] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM
monitoring using hardware virtualization. In CCS, 2009.

[58] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. R. Sadeghi. Just-In-Time code reuse: On the effective-
ness of fine-grained address space layout randomization. In
S&P, 2013.

[59] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee.
Enforcing kernel security invariants with data flow integrity. In
NDSS, 2016.

[60] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte:
Thwarting memory disclosure attacks using destructive code
reads. In CCS, 2015.

[61] The Clang Team. Clang 5 documentation: SafeStack. http:
//clang.llvm.org/docs/SafeStack.html, 2017.

[62] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-
sensitive CFI. In CCS, 2015.

[63] V. van der Veen, E. Göktaş, M. Contag, A. Pawloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida.
A tough call: Mitigating advanced code-reuse attacks at the
binary level. In S&P, 2016.

[64] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. CODOMs: Protecting software with code-centric
memory domains. In ISCA, 2014.

[65] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In SOSP, 1993.

[66] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code. In CCS, 2012.

[67] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and
W. Aiello. Shuffler: Fast and deployable continuous code re-
randomization. In OSDI, 2016.

[68] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. An-
derson, B. Davis, B. Laurie, P. G. Neumann, R. Norton, and
M. Roe. The CHERI capability model: Revisiting RISC in an
age of risk. In ISCA, 2014.

[69] J. Yang and K. G. Shin. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In VEE,
2008.

[70] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In S&P, 2009.

[71] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and
randomization for binary executables. In S&P, 2013.

http://bit.ly/2gr5hQM
http://bit.ly/2gr5hQM
http://clang.llvm.org/docs/SafeStack.html
http://clang.llvm.org/docs/SafeStack.html

[72] F. Zhang and H. Zhang. SoK: A study of using hardware-
assisted isolated execution environments for security. In HASP,
2016.

[73] M. Zhang and R. Sekar. Control flow integrity for COTS
binaries. In USENIX SEC, 2013.

[74] Y. Zhou, X. Wang, Y. Chen, and Z. Wang. ARMlock:
Hardware-based fault isolation for ARM. In CCS, 2014.

	Introduction
	Memory isolation in review
	Deterministic vs probabilistic isolation
	Defenses that rely on isolation
	Threat model

	Deterministic memory isolation
	Domain-based isolation
	Address-based isolation

	MemSentry applications
	Implementation
	VMFUNC
	MPK
	Encryption
	MPX and SFI
	LLVM & points-to analysis

	Evaluation
	Microbenchmarks
	Real-world performance
	Discussion

	Related work
	Conclusion

