Misusing Unstructured P2P Systems to Perform
DoS Attacks: The Network That Never Forgets

Elias Athanasopoulos!, Kostas G. Anagnostakis?, and Evangelos P. Markatos!

! Institute of Computer Science (ICS)
Foundation for Research & Technology Hellas (FORTH)
{elathan, markatos}@ics.forth.gr
2 Institute for Infocomm Research, Singapore
kostas@i2r.a-star.edu.sg

Abstract. Unstructured P2P systems have gained great popularity in
recent years and are currently used by millions of users. One fundamental
property of these systems is the lack of structure, which allows decentral-
ized operation and makes it easy for new users to join and participate in
the system. However, the lack of structure can also be abused by mali-
cious users. We explore one such attack, that enables malicious users to
use unstructured P2P systems to perform Denial of Service (DoS) attacks
to third parties. Specifically, we show that a malicious node can coerce
a large number of peers to perform requests to a target host that may
not even be part of the P2P network, including downloading unwanted
files from a target Web Server. This is a classic form of denial-of-service
which also has two interesting characteristics: (a) it is hard to identify
the originator of the attack, (b) it is even harder to stop the attack.
The second property comes from the fact that certain unstructured P2P
systems seem to have a kind of “memory”, retaining knowledge about
(potentially false) queries for many days. In this paper we present real-
world experiments of Gnutella-based DoS attacks to Web Servers. We
explore the magnitude of the problem and present a solution to protect
innocent victims against this attack.

1 Introduction

With the explosion of file sharing applications and their adoption by large num-
bers of users, P2P systems exposed a wealth of interesting design problems re-
garding scalability and security.

In this paper we examine one such problem that may arise from the implicit
trust that is inherent in current unstructured P2P systems. We show how a
malicious user could launch massive DoS attacks by instructing peers to respond
positively to all queries received, pretend to provide all possible files, and pretend
to share everything. Such peers usually respond to all queries in order to trick
ordinary users to download files which contain garbage, advertisements, or even
malware. In this paper we show that the responses provided by such bogus
peers may result in DoS attacks to unsuspected victims, which may not even

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 130-{I45] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Misusing Unstructured P2P Systems to Perform DoS Attacks 131

be part of the P2P network. Indeed, with modest effort we have managed to
develop techniques, which, if adopted by bogus peers, can result in DoS attacks
to third parties by redirecting a large number of peers to a single target host. In a
nutshell, whenever they receive a query, these bogus peers respond by saying that
the victim computer has a file that matches the query. As a result, a large number
of peers may try to download files from the unsuspected victim, increasing its
load significantly. Furthermore, we have developed mechanisms which ¢rick this
large number of peers to actually download files from the unsuspected victim.
To make matters worse, in our methods, the victim does not even need to be
part of the P2P network but could also be an ordinary Web Server. Therefore,
it is possible for a significant number of peers attempt downloading files from a
Web Server, increasing its load and performing the equivalent of a DoS attack.

The rest of this paper is organized as follows. Section 2 presents the archi-
tecture of the Gnutella P2P system focusing on the lookup and data transfer
process. Section 3 illustrates the techniques we developed to perform DoS at-
tacks by misusing the Gnutella system, and Section 4 presents experiments for
the measurement of the effectiveness of the DoS attacks. Section 5 presents an
algorithm to protect third parties from Gnutella based DoS attacks. Section 6
provides an overview of related work and Section 7 summarizes our findings and
presents directions for further work.

2 Gnutella Architecture

The Gnutella system is an open, decentralized and unstructured P2P system.
This Section describes the architecture of the Gnutella system and highlights
the basic components that are used as part of the attack.

2.1 Query-QueryHit Exchange Mechanism

Information lookup in the Gnutella system is performed using Query flooding
or controlled Query flooding, known as Dynamic Querying. In both cases, nodes
broadcast a Query packet, which embeds the search criteria, to some or all of
their first-hop neighbors. The Query packet is forwarded to the system until its
TTL becomes zero. In each forwarding step the TTL of the Query packet TTL
is decremented by one and a “HOPSs” counter is incremented. Along the paths
on which the Query propagates, every node of the system is free to answer by
issuing a QueryHit packet. A QueryHit packet travels back to the originator
of the Query following the same path of the Query packet. It is important to
note that there is no central mechanism to confirm whether peers generating
QueryHit packets actually hold a file that matches the search criteria of the
original Query.

A QueryHit packet consists of a standard Gnutella header describing the TTL
and HOPs of the packet and the actual QueryHit payload. Among other fields,
the QueryHit payload specifies the IP address and the port number of the node
holding the requested data file and a list of entries matching the search criteria
of the Query. Each entry is formed by the file name of the object, its local

132 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

index and sometimes a SHA1 hash, to assist in the parallel download of a file
from multiple locations (e.g., swarming). Upon receiving a QueryHit the node
that issued the query can directly connect to the host listed in the QueryHit
packet and try to perform the download. It is important to note that there is
no central authority to verify that the IP address and the port number listed
in the QueryHit packet match the IP address and the port number of the node
issued the QueryHit packet. In addition, a peer may generate QueryHit messages
with a spoofed “HOPs” field, to imitate QueryHits that have been generated by
another peer.

2.2 Data Transfer Protocol

The actual data transfer among two Gnutella peers is performed using an HTTP
based request /response mechanism. Specifically, when a servent receives a Query-
Hit and is willing to download the data file, it connects to the IP address and
port number listed in the QueryHit packet and issues a request that has the
following form:

GET /get/<File Index>/<File Name> HTTP/1.1\r\n
User-Agent: Gnutella\r\n

Host: 123.123.123.123:6346\r\n

Connection: Keep-Alive\r\n

Range: bytes=0-\r\n

\r\n

On the receiving end, the servent generates a response in the following form:

HTTP/1.1 200 OK\r\n

Server: Gnutella\r\n

Content-type: application/binary\r\n
Content-length: 4356789\r\n

\r\n

It is obvious that the data transfer process is an HTTP transaction, identical to
those exchanged between Web browsers and Web Servers. One small difference
is the “/get/<File Index>” part of the initial GET request, which is entered
only by Gnutella servents and not by Web browsers.

3 Exploiting Gnutella

The content lookup process and the data transfer mechanism can lead to serious
attacks against the system itself but also against third parties. Malicious users
can exploit the absence of a mechanism for verifying the integrity of the infor-
mation exchanged among peers and pollute the system with fake information.
In this Section we explore techniques that can lead to DoS attacks against any
machine connected to the Internet and to degradation of the Gnutella system
itself.

Misusing Unstructured P2P Systems to Perform DoS Attacks 133

3.1 Exploiting the Query-QueryHit Mechanism

As already noted, there is no central mechanism to verify that a node which
replies with a QueryHit to a Query is trustworthy. That is, malicious nodes can
reply to any Query they receive with a QueryHit which embeds the IP address
and the Port number of any remote Server. For example, a malicious node can
reply to every Query it receives and redirect peers to another Gnutella peer. In
the general case, a QueryHit can embed the IP address and the Port number of
any computer machine connected to the Internet, including Web Servers. This
may lead a large number of Gnutella peers to connect and try downloading a
non-existent data file from the Web Server. The Web Server may respond with
an HTTP 404, meaning that it was unable to locate the requested data file. As
we will show later in our experiments, Gnutella peers will persistently try to to
download the data file from the Web Server, even though they have received an
HTTP-level failure message.

3.2 Exploiting the HTTP protocol

A large number of HTTP requests that result in an HTTP 404 response code
may not be difficult to handle for a Web Server. The attack can be more efficient
if we can force the Gnutella peers to perform an actual download from the Web
Server. The download may not even be relevant to their search criteria Server.
This can be achieved by embedding a specifically constructed file name in the
QueryHit packet. For example, consider that a Query with search criteria “foo
bar” is received. The file name:

../../live HTTP/1.0\r\n\r\nfoo bar.mp3
will be displayed to the user’s client as:

../../live HTTP/1.0____

foo bar.mp3

If the user decides to download the above data file, the targeted Web Server will
receive a requestﬂ:

GET /get/1/../../1live HTTP/1.0\r\n\r\nfoo bar.mp3 HTTP/1.1\r\n
User-Agent: Gnutella\r\n

Host: 123.123.123.123:6346\r\n

Connection: Keep-Alive\r\n

Range: bytes=0-\r\n

\r\n

Since any Web Server will try to process the request as soon as it parses the
\r\n\r\n sequence, the above request is equivalent to:

GET /get/1/../../live HTTP/1.0\r\n\r\n

! Note that we have constructed an HTTP 1.0 request, which is accepted by the
majority of current Web Server software.

134 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

which, in turn, is equal to:
GET /live HTTP/1.0\r\n\r\n

Assuming there is a data file with the filename “live” in the Document Root of
the targeted Web Server, the tricked Gnutella peers will be forced to download
it. Depending on the file size, the Web Server may be unable to cope with the
incoming malicious requests.

3.3 Attacking Gnutella

Malicious peers that use this attack are hard to detect by the Gnutella system. A
malicious peer can spoof the HOP's field of a Gnutella message and thus hide its
origin. Consider that peer A constructs a QueryHit message and sends it to its
neighbors, but instead of inserting a HOPs=0 field, it inserts a HOPS=s field.
The neighbors of A, upon receiving the QueryHit (which in reality is constructed
by A), will think that another peer, s HOPs away from A, has constructed the
QueryHit and forwarded it to A.

A peer which receives fake QueryHits may consider the node which con-
structed these QueryHits as a spammer. Unfortunately, the identity which is
embedded in the QueryHit message is not the identity of the peer which con-
structed the QueryHit message. That is, Gnutella peers believe that it is the
victim peer that produces spam messages.

The problem of isolating spam nodes is actively investigated by the developers
of most Gnutella clients. To the best of our knowledge, the identification of
spammers is currently still a manual process. If some IP addresses of a subnet
qualify as belonging to nodes generating spam, the whole subnet is isolated from
the system by entering its range to a “black list” used by the Gnutella client.
Although this is a slow process requiring human intervention, a few misbehaving
nodes can lead to isolation of large subnets, something that an attacker might
exploit. This means that an attack to the Gnutella itself can be constructed by
producing fake QueryHits, which embed IP addresses of active Gnutella peers
that belong to known large subnets. These IP addresses are easy to be collected
by crawling the Gnutella system|g].

4 Experimental Results

We performed experiments in order to measure the effect of a DoS attack pro-
duced by the Gnutella system to Web Servers of our lab. The Web Server soft-
ware which we used was the standard pre-configured Apache[2] of the Debian
GNU/Linux Operating System[3]. We modified a well-known Gnutella servent[4]
to respond to every Query it receives with one and only QueryHit. This policy
was one of the fundamental choices that we made, since we wanted to per-
form an attack with minimal effort. The Web Server was installed on the same
host with the Gnutella servent. The Gnutella servent was trying to maintain
from 80 up to 100 simultaneous connections to the Gnutella system and besides

Misusing Unstructured P2P Systems to Perform DoS Attacks 135

issuing QueryHits it operated at the ultrapeer level implementing the whole
Gnutella protocol as is. In the rest of this Section we present the results of our
experiments.

4.1 Simple Query-QueryHit Exploitation

In the first experiment, our malicious servent was replying to every Query it
received with one and only QueryHit which embedded a file with advertised size
of 3,240,000 bytes. The filename provided in the QueryHit was the product of
the concatenation of the search criteria with the “.mp3” extension. That is, a
Query for “foo” had as a result a QueryHit for “foo.mp3”. Again, following the
“least effort” principle, we chose not to create a sophisticated engine that will
eventually understand the semantics of the Query, such as the format and size of
the file the remote user issuing the Query wants to download. Instead, we chose
to have the malicious servent generate QueryHits in the most obvious and naive
way.

We connected our malicious servent to Gnutella and let it to answer every
incoming Query for a period of two days. Figure [I] presents the requests which
were logged in the Apache log file by our Web Server. After careful examination
of the Apache log file, we found out that our Web Server had also recorded some
Gnutella Handshake requests in addition to HTTP GET requests. That is, our

1400

1200 -

1000 -

800 r

600

HTTP Requests (per second)

200

0
04/Sep 04/Sep 04/Sep 04/Sep 04/Sep 05/Sep 05/Sep 05/Sep 05/Sep
04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00

Time

100
90
80
70
60
50
40
30
20
10 |

HTTP Requests (per second)

0 | }
11/Sep 11/Sep 12/Sep 12/Sep 12/Sep 12/Sep 13/Sep 13/Sep 13/Sep 13/Sep 14/Sep 14/Sep 14/Sep 14/Sep
12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Time

Fig. 1. The rate of HT'TP Requests per second that our Web Server recorded. The
first graph presents the period that our malicious client was connected to Gnutella.
The second one presents the period after over 10 days of the experiment.

136 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

Web Server was considered as a good peer to connect to by other peers of the
system, since it was advertising that it had a lot of content to provide.

It is important to note that the second graph in Figure [depicts the HTTP
requests which were logged by our Web Server 10 days after the end of the
experiment. We observe that peers that could not receive the content they were
looking for, kept on trying for many days. It seems that Gnutella has a kind of
“memory”, with the information contained in QueryHits having a long lifetime
inside the system. It appears that a DoS attack based on generating malicious
QueryHit packets is hard to stop, since the Gnutella system will continuously
try to access the victim machine. This means that even if the original attacker
is discovered and shut down, the attack may still go on.

4.2 Adding HTTP Exploitation

In the next experiment we want to experiment with a DoS attack to a Web
Server using a single servent connected to the Gnutella system. We modified our
client to create QueryHits that carried filenames constructed in the fashion we
explained in Section 3.2. For each incoming Query we constructed a QueryHit
with the filename:

../../high_quality HTTP/1.0\r\n\r\n search_criteria.mp3

" 10K Queries —+—
4h 100K Queries -
1M Queries - |

X
XK

0 2 4 6 8 10 12 14 16 18 20
Time (Hours)

v

HTTP Downloads of 3.240.000 bytes each
(per hour)
I}
o
o

Fig. 2. Download rate (per hour) of a file of 3,240,000 bytes from the Web Server.
Each curve has a caption noting the time needed for the malicious client to answer the
amount of Queries.

Table 1. Statistics collected for the experiment, in which our Web Server actually
serves a file with 3,240,000 bytes

Duration 21 mins{lh 9 mins| 4 h
QueryHits Generated| 10,000 | 100,000 |1,000.000
Downloads Recorded| 696 1,017 6,061
Unique IP Addresses| 30 332 1,988

Misusing Unstructured P2P Systems to Perform DoS Attacks 137

Table 2. Statistics collected for the experiment, in which our Web Server actually
serves a file with 0 bytes. Denote that Duration is related to the time period needed
by the malicious client to serve the amount of Queries specified in the 2nd row. The
last two rows represent information collected for the whole experiment.

Duration 10 mins|1h 10 mins|{4 h 30 mins
QueryHits Generated| 10,000 | 100,000 | 1,000,000
Downloads Recorded| 133 10,639 258,769
Unique IP Addresses| 10 192 2,698

Our Web Server had a file with filename “high_quality” with an actual size of
3,240,000 bytes in its Document Root directory. That is, every request performed
by a Gnutella peer had as a result an actual file download of 3,240,000 bytes.

We performed the experiments for 10K Queries, 100K Queries and 1M Queries
respectively. That is, our malicious servent was generating a fixed amount of
QueryHit packets in each experiment. The attacked Web Server was instantiated
on a new port before the beginning of each experiment. Note that our Web Server
was isolated from all other traffic, since it was always listening to non-standard
port numbers. The download requests per hour recorded by our Web Server are
presented in Figure

We observe that in contrast with the previous experiment, the request rate
per hour is quite low. This is obvious, since the Web Server is quickly saturated
and thus unable to serve all incoming requests. That is, many requests are not
recorded because they never manage to complete the TCP/IP handshake with
the Web Server.

One could argue that the decrease of the request rate is due to our HTTP
exploitation trick. However, we have found that is not the case. We repeated the
experiment but instead of using a file of 3,240,000 bytes we used a file with the

Combined Download Rates in Relative Time

40000 ——
1M Queries
35000 r 100K Queries i
10K Queries -
30000 4h 30 mins 1

25000
20000
15000
10000

5000

(per hour)

HTTP Downloads of 0 bytes each

“=--1h 10 mins

0 5 10 15 20 25
Time (Hours)

Fig. 3. Download rate (per hour) of a file of 0 bytes from the Web Server. Each curve
has a caption noting the time needed for the malicious client to answer the amount of
Queries.

138 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

filename identical but empty (e.g., zero-size). The file size was again advertised
as 3,240,000 bytes in our QueryHits. The results of this experiment are presented
in Figure[3

As we can see the request rate is quite high. This confirms the observation
that our Web Server was under a DoS attack during the first experiment, since
a lot of its incoming requests were never recorded in the log file.

In Tables [0 and 2] we present the results for both experiments. (These Tables
actually contain the aggregate numbers used in Figures 2l and Bl) At first, we
observe that in the case where the Web Server actually serves a file with a size
of 3,240,000 bytes, more than 5,000 complete downloads have taken place in a
few hours. This corresponds to more than 15 GB of data and represents the
amount of data transmitted from our attacked Web Server during the experi-
ment. Furthermore, we observe that in the second experiment where our Web
Server responds with an empty file, we recorded downloads for more than one
quarter of the amount of QueryHits produced by our malicious servent. This
number does not represent unique requests, since the unique IPs which were
logged were less than 3,000. On the other hand, because of the existence of NAT
and Proxy gateway configurations, it is quite likely that less than 3,000 unique
IPs map to a larger number of unique users.

It is interesting to observe that users seem to download files with obscured
filenames. We believe that besides naive users that download everything, some
automated clients must exist that are pre-configured to download everything in
batch mode. This suspicion is supported by our logfiles, which contained records
of download entries with names like “foo.mpg.mp3”. That is, due to the naive
way that our malicious servent respond to incoming Queries, it generated com-
pletely bogus QueryHits, and, surprisingly, some of them were actually selected
for downloading.

4.3 Measurements of a Simultaneous DoS Attack

Since previous experiments showed that our Web Server was persistently under
a DoS attack, we wanted to study the nature of the attack in more detail. We set
up a new experiment with five malicious clients acting simultaneously against
five distinct Web Servers. The malicious clients were configured to serve 10K,
100K, 1M, 10M and 100M Queries using HTTP-exploitation. Each of the clients
was running in a dedicated machine. The targets were five distinct Apache pro-
cesses running on a dedicated Server, isolated from other incoming and outgoing
traffic, except for Web and SSH. We decided to discard the traces from the first
two clients (the ones that served 10K and 100K Queries) since the generated
download rate was quite low compared to the rate produced by the other three
clients. For the rest of this Section we will refer to the traffic produced by the
three malicious clients that served 1M, 10M and 100M Queries as small, medium
and large. Notice that the major difference between this experiment and the one
in Section 4.2 is that the malicious clients run simultaneously and all the DoS
attacks are taking place at the same time.

Misusing Unstructured P2P Systems to Perform DoS Attacks 139

Download rate for victim when attacker is responding to queries
1e+06

5 Large
3 Medium ————
3 100000 | Smat v~ '
:‘é‘ "/
25 10000 | 22 November 2005]
%8 100000
E& 1000 + 10000 1
S 1000
S 100 |,
S 100 + 0 ‘ ‘ ‘ ‘ 1
E 12:00 13:00 14:00 15:00 16:00 17:00 18:00
I
10 L L L L L L
22/Nov 24/Nov 26/Nov 28/Nov 30/Nov 02/Dec 04/Dec

Time
Fig. 4. Download rate per hour of a file of 0 bytes from the Web Servers during a

simultaneous DoS attack, while each of the malicious client is connected to the Gnutella
system. Y axis is on logarithmic scale.

Download rate after attacker has left the network

1e+06 ;

§ + Large
Medium -

g 100000 | Small
_‘%‘ :
S 10000 1
3
a< 1000 | 1
iz
S 100 | 1
o H H
a a :
E 10 + ; i i 4
T 1 ‘ ‘ ‘ ‘ ‘ ‘

26/Nov 03/Dec 10/Dec 17/Dec 24/Dec 31/Dec 07/Jan
Time

Fig.5. Download rate per hour of a file of 0 bytes from the Web Servers during a
simultaneous DoS attack, after the time each of the malicious client got disconnected
from the Gnutella system. Y axis is on logarithmic scale.

Table B presents the results of our last experiment. In addition, in Figures [
and [l we present the request rate recorded by our Web Servers while the mali-
cious clients were serving Queries and after the time they stopped. Observe that
the attack does not stop at the time the malicious clients end their action, but
continues for many days.

It is very interesting to observe the fluctuations of the curves for specific
daily time periods. We believe that this effect relates to non-business hours and
holiday periods in different locations, e.g., when users are more likely to be us-
ing their Gnutella clients or more likely to be engaged in other activities. For
example, notice in Figure [0l that on December 24 and at the end of Decem-
ber (e.g., on Christmas eve and around New Year’s day) the request rate is
quite low.

140 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

Table 3. Statistics collected for the final experiment, in which we issued a simultaneous
DoS attack in three distinct Web Servers. Denote that Duration is related to the time
period needed by the malicious client to serve the amount of Queries specified in the
2nd row. The last two rows represent information collected for the whole experiment.

Duration 303 mins|1,529 mins|18,273 mins
QueryHits Generated|1,000,000(10,000.000 100,000,000
Downloads Recorded | 731,625 (10,161,472 70,952,339
Unique IP Addresses| 5,272 52,473 421,217

4.4 Analysis of the Attacking Population

We take a closer look at characteristics of the population of peers participating
in the attack. As we have already explained the attack is the result of one and
only malicious Gnutella client, which is able to act maliciously by serving a fixed
amount of incoming Queries with fake QueryHits.

CDF for Requests/IP(%) - Medium Attack CDF for Requests/IP(%) - Large Attack

1e+06 1e+06
g o

2 100000 2 100000
173 1723
@2 @2

2 10000 2 10000
173 |73
E] E]

g 1000 g 1000
o o
e} o

S 100 E 100
E s

o 10 o 10
[a] o

1 1

0 20 40 60 80 100 0 20 40 60 80 100
IP Percentage (%) IP Percentage (%)

Fig. 6. The CDF of the percentage of the download requests issued per IP address for
the medium and the large attack respectively

In Figure [we show the distribution of the number of download requests per
IP address, for the medium and large attack respectively. Recall, from Table [3]
that in the medium attack trace more than 10 million downloads were recorded
from 52,473 unique IP addressedd. On the other hand, the large attack trace
embeds near 71 millions of downloads issued by 421,217 IP addresses.

The CDFs of both the medium and large attack are quite similar. We ob-
serve that roughly 80% of IP addresses issue less than 100 requests, and a small
percentage, about 0.5%, issue thousands of requests. This result is expected,
since normal users will not try to download a file more than a few times. The
small fraction of the IP addresses that generate massive download requests are
very likely to be automated downloaders that try to download everything, or
Gateways/Proxies that shield large subnetworks. It is interesting to note, that

2 This is likely to be more, since some of the IP addresses are mapped to Internet
Gateways/Proxies.

Misusing Unstructured P2P Systems to Perform DoS Attacks 141

although the two CDF's of Figure [6l are very similar, the IP addresses of the two
traces are different.

Figure [l leads to two important observations. First, it shows that the attack
has a very distributed nature resembling flash crowds. Second, a small fraction
of the tricked nodes, those that perform massive downloading, are the ones that
maintain the request rate. Even if someone manages to filter out the few IPs
that generate thousands of requests, it would still be difficult to stop the attack,
since the attack is the cumulative effect of normal clients that perform some tens
of download requests.

Finally, beyond the saturation of the communication channel, which is used
by the attacked Web Server, we must note that there are also other implications.
For example, the download requests are logged in the same fashion as ordinary
requests. That is, the attack garbles the traffic of the Web Server. Statistics
based on log files will produce misleading results. Akamized Web sites will also
face problems, since the Akamai Service is based on the magnitude of a Web
Site’s traffic.

5 Countermeasures

As demonstrated in the previous Section, a DoS attack can be launched by
malicious peers that answer all Queries received and hereby direct unsuspected
Gnutella peers to request a non-existing file from a third party such as a Web
Server. Furthermore, by embedding specific file names in the QueryHit packet,
malicious peers can force ordinary peers to download an existing file from a Web
Server. If a great amount of ordinary peers is tricked to download a large file
from a Web Server, the Server will soon be unable to serve its ordinary requests,
since its available capacity will be exhausted by the requests performed by the
tricked Gnutella peers.

One could argue that the existing Gnutella software can be changed to de-
tect HT'TP-exploitable filenames in QueryHit packets, but this would not cover
attacks against Gnutella peers. Another practical solution would be to prevent
URL escaping in HTTP GET requests, in a fashion similar to Web Browsers.
Network-level intrusion detection and prevention systems could also be used to
filter Gnutella traffic from the traffic a Web Server receives.

However, we believe that it is worth examining whether it is possible to tackle
the problem “head-on” rather than relying on partial fixes or workarounds such
as the ones presented above. We next describe an algorithm that aims to detect
and mitigate the impact of DoS attacks to non-Gnutella participants and present
a preliminary evaluation.

5.1 Short Term Safe Listing: The SEALING Algorithm

Our algorithm mainly focuses on protecting innocent victims such as non-
Gnutella participants from DoS attacks originated from Gnutella. We consider
a non-Gnutella participant as any host advertised to Gnutella (i.e. with an IP

142 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

address and port number delivered in a Gnutella QueryHit) that does not sup-
port the Gnutella protocol. That is, the following Validation Criterion is used
to distinguish between third parties that are potential victims of a DoS attack
from normal Gnutella peers:

SEALING Validation Criterion: Any host advertised in a Gnutella QueryHit
packet which can not respond correctly to a Gnutella Handshake process is con-
sidered as a non-Gnutella participant and a potential victim for a Gnutella-based
DoS attack.

The SEALING algorithm is shown in Figure [[l The goal of the algorithm is
to place potential DoS victims in a Safe List based on the SEALING Validation
Criterion. This Safe List keeps track of machines that should not be contacted
for downloads. Each Gnutella node keeps a Safe List and periodically updates
its records. Each record has a lifetime of a fixed time interval. For the purposes
of our evaluation, we used a fixed time interval of 30 minutes.

0 SafelListLifeTime := 30 mins;

1 if (GnutellaPacket(pkt) == QueryHitPacket) {
2 GnutellaExtractNode (pkt, &GnutellaNode);
3 if (SafeListContains(GnutellaNode)) {

4 if (CurrentTime() -

5 SafeListGetTimeOfNode (GnutellaNode) <
6 SafeListLifeTime)

7 GnutellaDropPacket (pkt) ;

8 }

9 else

10 GnutellaParseHits(pkt);

11 3}

12 ...

13 onDownloadAttempt(node, file) {

14 if (GnutellaHandShake(node))

15 GnutellaDownload(node, file);

16 else

17 SafeListAdd(node) ;

18 }

19

Fig. 7. SEALING Algorithm

5.2 SEALING Evaluation

We attempt to evaluate the SEALING algorithm using the trace collected from
the Middle DoS attack. We group the download requests by the IP address
recorded by the Web Server during the attack. We consider the first download
request as a download attempt that, according to SEALING, will fail since the
Web Server will not respond correctly to the Gnutella Handshake. Based on
SEALING, all the download requests following the first download and for the
next 30 minutes will be filtered out by the Gnutella peer and eventually will
not make it to the Web Server. That is, we assume that the Gnutella peer that
received the QueryHit, will add the Web Server to its Safe List after failing to
Handshake with it.

Misusing Unstructured P2P Systems to Perform DoS Attacks 143

SEALING Evaluation
100000

T T T T T

= DoS Attack ——

3 SEALING -

< 10000 | 1
[0}

R N

2 1000 T A
[}

=}

o

T 100 | 1
el

g

E 10 | <
H ;

[a)]

1
22/11:12 22/11:14 22/11:16 22/11:18 22/11:20 22/11:22 23/11:00 23/11:02 23/11:0-
Time

Fig. 8. The evaluation graph of the SEALING algorithm. The solid curve represents
the amount of download requests during a DoS attack using Gnutella. The dashed
curve represents the amount of download requests that will be eventually exposed to
a Web Server, if Gnutella nodes utilize the SEALING algorithm.

For every download request we find in the trace we compare its timestamp
with the first one encountered in the trace, which serves as the time offset of
the SEALING algorithm. If the timestamp of a download request is found to be
over 30 minutes after the time offset, then we consider that the download request
serves as a new Handshake, which will also eventually fail. Again, we filter out
the next download requests we encounter in the trace that have relative time
difference less than 30 minutes with the new time offset. The results of the eval-
uation, as shown in Figure [8 indicate that SEALING reduces the effectiveness
of the DoS by roughly two orders of magnitude in terms of the number of down-
load requests to the victim site. We believe that this is sufficient to downgrade
the threat of Gnutella-based DoS attacks to the level of mere nuisance for the
majority of potential victims.

6 Related Work

There are many studies on security issues of unstructured P2P systems such
as Gnutella. Daswani end Garcia-Molina[5] propose a number of strategies for
limiting Query flooding attacks through Query traffic balancing an the Ultrapeer
level. Mishra[6] describes extensively a number of existing attacks in P2P systems
and proposes a new protocol called Cascade. One of the main features of Cascade
is iterative search. In iterative search, a peer controls the Query flow. In contrast
with pure flooding, iterative search forwards the Query to a peer’s neighbors and
requests the neighbors of each neighbor. Then, it proceeds on connecting to them
and performing the Query recursively.

Zeinalipour-Yazti[10] considers the spam generation problem in Gnutella and
proposes for each peer to perform a direct connection to the peer it wants

144 E. Athanasopoulos, K.G. Anagnostakis, and E.P. Markatos

to download from, using the system protocol and the download protocol, re-
querying the peer and then performing the download.

AusCERTI] has published an anonymous article which presents a traffic anal-
ysis from Gnutella traces. The analysis discusses IP addresses and Port numbers
in PONG and QueryHit messages that are not Gnutella peers, implying that
DoS attacks via Gnutella may have already been performed.

Paxson[7] has studied the problem of reflectors in DoS attacks, where Gnutella
is also listed as a major threat. According to Paxson, a Gnutella network can be
used as a reflector in a DoS attack by generating fake PUSH messages. A PUSH
message is sent to a firewalled peer which can not accept incoming connections,
so as to initiate the connection for a data transfer.

Finally, some proposed enhancements to Gnutella may further amplify the
attack presented in this paper. For instance, in an attempt to address to the
freeriders problem Sun and Garcia-Molina have proposed SLIC[J], a technique
that rewards data share holders and isolates freeriders. Because it does so based
on the number of Queries and QueryHits forwarded, SLIC is likely to be a
prosperous environment for the attack presented in this paper, since it promotes
peers that have seemingly great answering power.

7 Concluding Remarks

We have demonstrated how unstructured P2P systems can be misused for
launching DoS attacks against third parties. We have developed an attack that
exploits a number of weaknesses of unstructured P2P systems and manages to
instruct innocent Gnutella peers to generate a significant amount of traffic to a
victim host. The victim can be another Gnutella peer, but also a host outside
the Gnutella system, such as a Web Server.

Although the basic attack relies primarily on the ability to spoof QueryHit
responses, we also took advantage of the HT'TP protocol used by Gnutella peers
for data transfers. This allowed us to construct malicious QueryHits that result in
downloads of arbitrary files from a target Web Server. An interesting observation
is that the use of HT'TP in this case allowed the attack to “leak” to other systems
as well.

Finally, we have developed SEALING, an algorithm which aims at keeping
a local “Safe List” on each peer, containing IP addresses and port numbers of
hosts that have been characterized as non-Gnutella participants. Our algorithm
assumes that any connection from Gnutella participants to non-Gnutella partic-
ipants is a possible DoS attack.

7.1 Future Work

To ensure prompt mitigation of Gnutella-based DoS attacks we believe that it
is necessary to further strengthen our defenses. The SEALING algorithm pre-
sented in this paper is sufficient, but only if it is adopted by a large fraction
of Gnutella users, as its effect is proportional to the fraction of nodes that sup-
port it. Until most nodes implement SEALING, it may be worth considering

Misusing Unstructured P2P Systems to Perform DoS Attacks 145

countermeasures that can be effective even if only deployed on a smaller fraction
of nodes, such as superpeers. One solution that we are currently exploring is
probabilistic validation of QueryHits on superpeers.

Another direction worth exploring is how the basic attack can be used against
third parties other than Web Servers and Gnutella peers, and for launching
attacks other than DoS. For example, it may be possible to embed buffer-overflow
URLs in QueryHit responses, so that Gnutella peers unintentionally assist in the
dissemination of malware-carrying exploit code to victim Servers. Determining
the feasibility and effectiveness of such an attack requires further investigation
and experimental analysis.

Acknowledgments

We thank, in alphabetical order, the following members of the Distributed Com-
puting Systems Laboratory (ICS, FORTH) for their valuable remarks during
a series of meetings regarding the material presented in this paper: Periklis
Akritidis, Spiros Antonatos, Demetres Antoniades, Manos Athanatos, Demetres
Koukis, Charalambos Papadakis, Michalis Polychronakis, and Vivi Fragopoulou.
This work was supported in part by project SecSPeer (GGET USA-031), funded
in part by the Greek Secretariat for Research and Technology and by the Core-
Grid Network of Excellence.

References

1. Anonymously Launching a DDoS Attack via the Gnutella Network.
http://www.auscert.org.au/render.html?it=2404.

Apache web server. http://www.apache.org/.

Debian gnu/linux os. http://www.debian.org/.

Gtk-gnutella servent. http://gtk-gnutella.sourceforge.net.

N. Daswani and H. Garcia-Molina. Query-flood dos attacks in gnutella networks.
In ACM Conference on Computer and Communications Security, 2002.

6. M. Mishra. Cascade: an attack resistant peer-to-peer system. In the 3rd New York
Metro Area Networking Workshop, 2003.

7. Vern Paxson. An analysis of using reflectors for distributed denial-of-service at-
tacks. SIGCOMM Comput. Commun. Rev., 31(3):38-47, 2001.

8. Daniel Stutzbach and Reza Rejaie. Characterizing the two-tier gnutella topology.
SIGMETRICS Perform. Eval. Rev., 33(1):402-403, 2005.

9. Qixiang Sun and Hector Garcia-Molina. Slic: A selfish link-based incentive mecha-
nism for unstructured peer-to-peer networks. In ICDCS ’04: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’04), pages
506-515, Washington, DC, USA, 2004. IEEE Computer Society.

10. D. Zeinalipour-Yazti. Exploiting the security weaknesses of the gnutella proto-
col. Technical Report CS260-2, Department of Computer Science, University of
California, 2001.

CUp W

	Introduction
	Gnutella Architecture
	Query-QueryHit Exchange Mechanism
	Data Transfer Protocol

	Exploiting Gnutella
	Exploiting the Query-QueryHit Mechanism
	Exploiting the HTTP protocol
	Attacking Gnutella

	Experimental Results
	Simple Query-QueryHit Exploitation
	Adding HTTP Exploitation
	Measurements of a Simultaneous DoS Attack
	Analysis of the Attacking Population

	Countermeasures
	Short Term Safe Listing: The SEALING Algorithm
	SEALING Evaluation

	Related Work
	Concluding Remarks
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

