Practical Information Flow for Legacy Web Applications

Georgios Chinis
Foundation of Research and
Technology—Hellas

Polyvios Pratikakis
Foundation of Research and
Technology—Hellas

Elias Athanasopoulos
Columbia University, NY

Sotiris loannidis
Foundation of Research and
Technology—Hellas

ABSTRACT

The popularity of web applications, coupled with the data
they operate on, makes them prime targets for hackers that
want to misuse them. To make matters worse, a lot of these
applications, have not been implemented with security in
mind, while refactoring an existing, large web application
to implement a security or privacy policy is prohibitively
difficult. This paper presents LABELFLOW, an extension of
PHP that simplifies implementation of security policies in
web applications. To enforce a policy, LABELFLOW tracks
the propagation of information throughout the application,
transparently and efficiently, both in the PHP runtime and
through persistent storage. We provide strong theoretical
guarantees for the policy enforcement in LABELFLOW; we
define its semantics for a simple calculus and prove that it
protects against information leaks. We used LABELFLOW to
add and enforce access control policies in three popular real-
world large scale web applications: MediaWiki, Wordpress
and OpenCart. LABELFLOW requires minimal code changes
of 50—100 lines of code per application, while incurring little
execution overhead of up to 5.6% at worst.

1. INTRODUCTION

Controlling the flow of information is paramount to the
security of applications. Ensuring data confidentiality, in-
tegrity and enforcing security policies in an application, all
rely on managing and restricting access to data and their
flow. Web applications, in particular, pose a challenge to
traditional information flow techniques, because they span
a multitude of layers, platforms and languages. To control
information flow in a web application, certain parts must
be designed accordingly from the ground up, during the de-
velopment cycle, to reflect the desired policy sets. FEven
then, web applications are composed of many parts, possi-
bly written in different languages, making it difficult for the
programmer to implement a security policy, test and debug
it. For the same reason, changing an existing web applica-
tion to control information flow or adhere to, for instance, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICOOOLPS’13, July 2, 2013, Montpellier, France.

Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

specific privacy policy, is very difficult.

Unfortunately, the majority of popular applications have
not been designed with privacy as a prime consideration.
Legacy applications are more susceptible to information leak-
ages, which may lead to financial loss [13] or loss of users’
privacy [9]. The cost of redesigning an application to harden
its security may be prohibitively high, or the functionality
of the system may be so important to its users, that they
may be resistant to change.

Even when a security policy is designed into an applica-
tion, it is the responsibility of the developers to implement
it correctly. In essence, it is up to the programmer to find
all the points in the code where, for example, sensitive data
may leak and insert the appropriate checks. In large, com-
plex applications that undergo continuous development, it
is very easy to miss such a check, forget to patch all points,
etc., often introducing information leaks, vulnerabilities and
exploits.

For example, MediaWiki is a wiki application written in
PHP, developed and used in Wikipedia and other online
encyclopedias, dictionaries, etc. As such, it is designed to
facilitate collaboration and information sharing, not avoid
leaks and control access levels. Indeed, MediaWiki’s manual
explicitly states that:

“MediaWiki is not designed to be a CMS, or to
protect sensitive data. To the contrary, it was
designed to be as open as possible. Thus it does
not inherently support full featured, air-tight pro-
tection of private content.” [16]

Changing such a complex application to implement vari-
ous security policies is very tedious and error-prone, as the
system was not designed to track and restrict information
flow.

MediaWiki in particular, and web applications in general,
usually follow a three-tier architecture consisting of client-
side code, server-side code and a database. This multi-tier
architecture [12] imposes an extra problem to correctly im-
plementing and enforcing security and privacy policies, as
the programmer has to reason about persistent state in the
database, untrusted user input, arbitrary client-side code
behavior, etc. Existing solutions for system-wide informa-
tion flow [27] are often too general; they cannot take into
account (7) the specific application semantics and policy re-
quirements —causing false positives, and (iz) the distributed
setting of a web application, where the database may very
well be at a different machine —causing false negatives.

This paper presents LABELFLOW, a system for dynamic

information flow tracking on web applications in PHP. LA-
BELFLOW aims to improve security and privacy in legacy
web applications using label-based information flow. LA-
BELFLOW is designed to handle the 3-tier architecture usu-
ally found in web applications; it transparently extends the
database schema to associate information flow labels with
every row; it extends the PHP bytecode interpreter to trans-
parently track labels at runtime; and it combines the two so
that the programmer need only implement the policy code
with minimal or zero changes to the rest of the legacy ap-
plication.

LABELFLOW works in the PHP language runtime, implic-
itly tracking labels for every piece of data: data received
from or sent to the user, and data written to or read from
the database. LABELFLOW does not specify explicit, fixed
policies; instead it provides an API to the user to write the
policy code, i.e., a mechanism to create labels and associate
them to pieces of data. The programmer can then use this
mechanism to implement and enforce a wide range of policies
with minimal changes to the rest of the application code.

In comparison, the state of the art PHP data flow system
is RESIN [35]. In RESIN, the developer writes application spe-
cific code for the assertions that must hold for each piece of
data. RESIN ensures the proper propagation and the timely
execution of the assertions. RESIN, however, requires the
developer who implements the assertions to have detailed
knowledge of the application implementation. In LABEL-
Frow, the policy is expressed in an application agnostic
representation, making the migration easier. Finally, LA-
BELFLOW is lightweight compared to RESIN, imposing much
less time and space overhead on the application. Overall,
this paper makes the following contributions:

e We designed LABELFLOW, an information flow frame-
work for implementing security and privacy policies in
legacy web applications. LABELFLOW can be used in
a wide range of web applications, with minimal pro-
gramming effort.

e We implemented LABELFLOW in the PHP runtime,
targeting web applications that use MySQL for per-
sistent storage. Our implementation is fast, imposing
an overhead of 3% over the original PHP runtime.

e We formally defined LABELFLOW’s semantics for a sim-
ple language that abstracts over PHP, and proved that
it protects against information leaks.

e We deployed LABELFLOW in existing real-world appli-
cations, requiring minimum code changes. More pre-
cisely, we applied LABELFLOW on MediaWiki, the soft-
ware that runs Wikipedia, using less than 100 lines of
code; on WordPress, a popular blogging tool, in 60
lines of code; and on OpenCart, an online-store man-
agement application, in less than 60 lines of code.

The rest of this paper is organized as follows.

Section 2 provides background information on information
flow policy mechanisms. Section 3 presents the architecture
of LABELFLOW and discusses the functionality of each com-
ponent. Section 5 discusses the LABELFLOW implementa-
tion. Section 6 reports on qualitative and quantitative mea-
surements of the performance and usability of LABELFLOW.
Section 7 covers related work and we conclude in Section 8.

2. BACKGROUND

The most common security policy in web applications is
access control. Such policies model every user of the system
with an identifier and describe what data a user can access.
Access control policies restrict the release of information,
but not its propagation afterwards. Once the information is
released, all control over it is lost. In contrast, information
flow policies ensure that the propagation of data follows the
specified policy. For instance, a policy may dictate (i) the
users who could access the information and (ii) places in the
code where the data can be used.

Information flow policies partition program variables into
different security levels and restrict the flow of information
among variables at different levels. Label-based information
flow, in particular, uses a set of labels to represent security
levels and to track the flow of information. Consider, for in-
stance, the simplest two security levels secret (H) and public
(L). Program variables are assigned one of those labels —
we write X : H to denote that variable X has security level
secret. To enforce the policy we must prevent for any vari-
ables X : H and Y : L, any execution Y := X that would
consist an information leak, because the secret label is more
restrictive than the public label. Information can propagate
from L to H but not the other way around.

Note that labels can have different semantics according to
context. Labels can be used to label secret or public data
in one context and trusted or untrusted data in another
context. A label-based information flow system like LABEL-
Frow simply tracks the propagation of data and their labels
as the program executes. Individual label semantics are de-
fined by the programmer according to their needs and appli-
cation policy. In general, one can implement many kinds of
security and privacy policies using label-based information
flow: access control lists, tainting analysis, public/private
data, etc.

In the simple model with two labels, secret is more re-
strictive than public —we write L < H. Real-world appli-
cations may have multiple security levels in many contexts,
so, their labels do not need to be in the same hierarchy. To
support more expressive label dependencies, we use a label
lattice [18]. The label lattice is usually a semi-lattice with
the following properties. (i) A label 1 is more restrictive
than a label I5 if there is a path from [1 to I3 in the label
lattice. (ii) The bottom of the label lattice always represents
the label with lowest restrictions. The lattice create a tran-
sitive, partial order relation between labels, better suited to
represent policies in complex applications.

Side channels, like time attacks [4, 38, 3], the program’s
execution flow, power analysis, etc., can also cause informa-
tion leaks. To protect against such leaks, a secure informa-
tion system must enforce the property of non-interference.
Non-interference dictates that an attacker would not be able
to distinguish two runs of the program if they differ only in
their secret values. Unfortunately, full non-interference is
too strict to be enforced in practice. Moreover, it is a prop-
erty of all execution paths, i.e., it can only be enforced using
static techniques. Dynamic systems cannot normally decide
non-interference, as they only observe one possible execution
path. In LABELFLOW, however, we restrict secret values to
the persistent database, which allows us to enforce a (some-
what relaxed) non-interference property dynamically.

3. DESIGN

Web Application

\ 4

Database

PHP Engine

Figure 1: The architecture of LabelFlow

Manager Anne James
Bob Alice Group A
Public

Figure 2: Label graph: A semi-lattice representing
the relation between the labels

LABELFLOW aims to integrate easily with existing web
applications, with minimal changes. LABELFLOW protects
sensitive information inside the application from reaching
unauthorized users by malicious actions or programming er-
rors. We target web application with a 3-tier architecture,
where the presentation, the application and the storage are
three distinct components running on different platforms.

The presentation tier is inherently unsafe since it is ex-
ecuted in the user’s browser. Sensitive data should not
reach the presentation layer of an unauthorized user, as this
amounts to an information leak. It is very easy to intercept
the information on the wire or modify the client code to steal
the information. Information is only safe so long as it stays
in the application or the storage tier. One of the challenges
in this work was to ensure that labels propagate correctly
when data migrate between the application and storage tier.
Overall, our system is used as follows.

3.1 Application Layer

Initially, the programmer must label sensitive data that
need to be monitored using our API. Deciding which data
need labeling depends on privacy policy the developer wishes
to enforce. For instance, if the developer wishes to enforce
an access control policy, they should create a label for every
user and associate new data with the labels representing only
the users that can access it. Alternatively, implementing
a tainting analysis needs only two labels for trusted and
untrusted data.

Apart from initial labeling, the application should follow
its normal execution path. During execution, data values
that depend directly on labeled data are also transparently
labeled. If two operands have different labels the result is
labeled with a combination of those labels (usually the union
of the labels). Section 5 discusses propagation in detail.

3.2 Storage Layer

A database being an important component of any web ap-
plication, data should not lose their labels when stored in
the database. Otherwise, labeling is not persistent across
requests. Storing this additional information in a database
is difficult to do manually, because it requires modifying the
schema. LABELFLOW automatically extends the database
schema with a label per row, for each table. This granularity
is similar to row-level security offered by several databases
(Oracle, IBM, Microsoft), and means to label the data form-
ing the row, but also their relation.

Our approach requires specific changes to the database
schema of the application. This, however, is not trivial to
do manually, as the schema may be dynamically generated
according to installation configuration options. Installing
web applications is commonly done via their web interface,
so it often uses the same database API to send CREATE TA-
BLE queries to the database, as it does for common selec-
tion and update. Thus, we have designed LABELFLOW to
intercept the queries from the application to the database
at run time, and automatically rewrite them to change the
schema as necessary, transparently adding a label per row
in each table. We opted for this method instead of changing
the schema after installation, as done by systems in related
work, because (i) installation and creating a schema is a
part of the web application, and thus may leak information,
and (ii) it makes porting a web application to LABELFLOW
easier.

We decided to restrict granularity to a label per row of
each table, instead of the finer granularity of a label per
field [7]. LABELFLOW extends each table in the database
with an extra column where the label is stored. Certainly, a
finer-grained granularity allows for more control over which
information is tainted with a certain label. However, coarse-
grained labeling per row reduces space requirements and
minimizes changes to the original schema. Moreover, the
relation among data items may be important. For example,
consider the case where even though two pieces of informa-
tion are public, their relation may be secret. To capture
such cases, we use one label per row.

Moreover, row-based labeling allows for easier and faster
query rewriting. To guard against information leaks when a
row consists of fields with different labels, we use the follow-
ing conservative policy: The label of the whole row is the
“meet” of the labels of all fields stored in the row. This con-
servative policy can restrict the label of some fields even fur-
ther, when, for example, many public data items are stored
in the same tuple with a secret data item. This conserva-
tive policy may elevate the label of some data but protects
against data leaks.

3.3 Label Graph

Consider the secure MediaWiki application example de-
scribed in Section 1. MediaWiki users generate data, which
they may wish to keep private from or share with other
users. The generating user is the owner of the new data and
he should be able to choose the privacy policy regarding
his data. LABELFLOW provides a powerful and application-
agnostic mechanism to express privacy policies.

Overall, in addition to labeling new data, the applica-
tion programmer can use the LABELFLOW API to add “sub-
label” edges among labels, essentially structuring all labels
into a semi-lattice. We use the semi-lattice model proposed

(Constants) n € N

(Base Labels) E e L

(Labels) lypc == klx|lUl|L

(Constraints) C == 0|ClCl

(Values) v ou= Lnt ()| z.e

(Expressions) e == v |ee|createtable
| insert e inton | select e from n
| newlabel | taint e with e
| elevate ep

(Databases) DB == 0| DB,T

(DB Tables) T C 0|T,(n0)

Figure 3: A simple calculus with dynamic labels and
persistent state

by Mayer et al [18], where there is an reflexive, transitive,
acts-for partial order relation between the labels. The semi-
lattice includes an implicit, common “bottom” element for all
labels regardless of their context, so that LABELFLOW can
use it as a default label for otherwise unlabeled data. Nor-
mally, this “bottom” label in the semi-lattice corresponds to
public information, every user in the system, etc., according
to the policy implemented.

The owner can choose to create a fresh label inaccessible
from everyone to keep their data private, use the “bottom”
label to freely share data, or assign a label accessible only
from a small group of other users. With this model, the
owner of the data can grant access to any combination of
users. Note that implementing the graph requires knowl-
edge of the desired policy and of our framework; it does not
require detailed knowledge of the application. We believe
this is important for legacy applications where continuous
iterative development may have rendered the code base un-
readable.

Figure 2 shows an example label hierarchy for a hypothet-
ical instance of the MediaWiki application. The vertices are
labels and directed edges correspond to the partial order re-
lation. The Public vertex is the “bottom” element of the
semi-lattice. In general, an edge between labels A and B
captures the relation A acts for B, meaning that label A
is more restrictive than label B. Labels Anne, James, Bob
and Alice are unique to their respective users, whereas, la-
bels Manager, Group A and Public were created to facilitate
sharing between the users.

4. FORMAL SEMANTICS AND SOUNDNESS

We formalize our changes on PHP using a simple calculus
extended with database persistent state, we define a small-
step operational semantics for our language, and state the
theorem of correctness for label flow. The full details of
the formal proof can be found in an accompanying technical
report [5].

Figure 3 presents a simple functional language with sup-
port for dynamic labels and abstract database queries. Base
labels k are label “atoms”; label representations created us-
ing our dynamic label API. Any combination /3 Uiz of labels
is also a label. The label lattice C is a set of ;1 C [y con-
straints among labels. Values include unit, functions, all
labels { and integer constants n', where we annotate the in-
teger value n with its run-time label [, to reflect the run-time
behavior of our PHP Virtual Machine. All constants in the

E-App
|] (Az.e) v — e[v/z]
E-CREATE
[] (DB, pc, create table) — (DB, 0), pc, ())
[E-INSERT] Ti = T (n, LU pe)
(T1,...,Tk,...Tn,pc,insert n' into k) —
<T17 s 7Tlé7 i .Tn,pC, ()>
T, € DB
B Sermor] () € (D | (m.) €T ALE pe)

(DB, pc, select n'* from k) — (DB, pc,n'?)

| — fresh

[E-NEW]
(DB, pc, newlabel) — (DB, pc, 1)

[E-TAINT] -
(DB, pc, taint n' with I') — <DB,pc, n! Upc>

(DB, T,elevate e¢) — (DB, T, elevate ¢')

E-Elevate-1 S
(DB, pc, elevate e) — (DB, pc, elevate e’)

E-Elevate-2
(DB, pc,elevate I) — (DB, 1, ())

Figure 4: Operational semantics rules

program code are trivially annotated with the label L.

Program expressions e include function application, database

primitives and dynamic label allocation. Intuitively, expres-
sion create table creates a table in the database; expression
insert e into k inserts the result of expression e into the k-th
table of the database; and expression select e from n looks
up the result of e in the n-th table of the database. More-
over, expression newlabel creates and returns a new label
at run time; expression taint e; with ez computes e; to an
integer, ez to a label, and taints the integer with the new
label; and expression elevate e, computes pure expression
ep (which should not have side effects in the database) to a
label, and sets the current elevation state to that label.

4.1 Operational Semantics

Figure 4 presents the small-step operational semantics for
the language. Judgments have the form

(DB, pc,e) — <DB/,pc/,e/>

where DB is the database state, pc is a label representing
the “current elevation” level, and e is the executing program.
After the program takes a step to ¢/, the database may have
changed to DB’ and elevation level pc’. Rule [E-APP] is
standard function application.

Rule [E-CREATE] creates an additional table in the database,
initially empty of rows. We abstract over table names and
database row fields, instead using the table creation order
n to identify database tables in all queries, where every ta-
ble has only one column containing values, and a column
holding the label of every row. Rule [E-INSERT] inserts a
value n! into the database, using both the current elevation
level and the value’s label pcLIl. Finally, [E-SELECT] shows

the execution of a select query which verifies that the value
selected is visible in table n using the current pc elevation.

Rule [E-NEW] executes the dynamic creation of a label,
where expression newlabel always takes a step to a fresh label
[, not previously occurring in the database. Rule [E-TAINT]
updates the label of a value n to the given label I” also taint-
ing it with the current elevation level pc. Rules [E-ELEVATE-
1] and [E-ELEVATE-2] execute policy code. Namely, to exe-
cute expression elevate e we require in [E-ELEVATE-1] that
e does not change the database DB. The policy code e can
only compute and return a label | which is set to be the
new elevation label at the end of the elevate e expression in
[E-ELEVATE-2].

4.2 Soundness

We use the semantics to prove that any code not using
elevate e instructions satisfies noninterference, i.e., cannot
leak any data labeled by a label above its pc. To do that,
we introduce the following definitions.

DEFINITION 1 (TABLE SIMILARITY). Let tablesTi,T> C
N x L. We say that Th and T2 are similar up to | and write
(Ty ~1 T2), if

VI'CElv (v,I') €Ty < (v,l') €T

Intuitively, two tables are similar up to label [if the only
differences between 7 and 75 occur on data with label more
restrictive than [.

DEFINITION 2 (DATABASE SIMILARITY). Let databases
DB, ={T\,...,T.} and DBy = {TY,...,Ty}. We say that
DB; and DBy are similar up to l and write DBy =; DBs if

V1 SZSTL,TZ (S DBl,Ti/ € DBy = T; ~ Tl/

Intuitively, two databases are similar up to [if the have
the same schema and each table T; in DB; is similar up to
I with T/ in D B>, meaning the two databases only differ on
data labeled with a label more restrictive than [.

THEOREM 1. Assume that e is an expression without any
elevate e terms, | and pc are labels, and DB1, DBy are
databases with DBy ~; DBy. Then executing e under the
two different databases with input labeled I will yield the same
results:

(DB1,pc,e) —* <DB§7pc7v>
if and only if

(DBa,pc,e) —* <DB§,pc,v>
Moreover, it will be DBy ~; DBY5.

We prove this bisimilarity theorem by straightforward in-
duction. Details of the proof can be found in an accompa-
nying technical report [5].

5. IMPLEMENTATION

This section describes the implementation of LABELFLOW.
To implement dynamic, label-based information flow, LA-
BELFLOW is comprised of three components: (i) support for
label-based information flow in the PHP runtime engine and
standard library, (ii) support for transparent rewriting of
database queries to include labels, and (iii) a library of PHP
code that includes the LABELFLOW API to the web appli-
cation programmer, as well as implementations of common
policies.

5.1 PHP Runtime

To track information flow in the PHP part of the appli-
cation, we modified the PHP runtime engine to propagate
labels along with data. This approach is transparent to
the PHP programmer and does not require any dynamic
or static rewriting of PHP code. The LABELFLOW modi-
fied PHP runtime engine is based on a prototype engine by
W. Venema [30], designed for defending against well known
web attacks such as Cross-Site Scripting and SQL injection
using runtime taint analysis. That runtime engine can pre-
vent such attacks by marking data coming from the net-
work as untrusted, potentially leading to SQL or HTML
injections, or PHP control hijacking. The engine tracks un-
trusted data, which cannot be used by certain function calls
without prior sanitization. We ported this runtime engine
to a current version of PHP, as it was unmaintained, and
extended it with support for generic label propagation, ad-
ditional primitive operators, and foreign function calls.

Label representation.

The PHP interpreter, named the Zend engine, is written
in C. The runtime engine parses PHP code and generates
a series of opcodes which are then executed. The opcodes
are in an intermediate bytecode representation between the
PHP code but higher-level than assembly language. We ex-
tended the internal representation of userspace variable to
carry the label.

We use a bit-vector representation for labels, where the
taint field is 32 bits long; we use one-hot encoding to rep-
resent the labels, thus our system can currently support up
to 32 labels. The number of labels is limited but easy to ex-
tend with minimal cost. Additionally, one-hot encoding of
the label permits very fast manipulation of the taint bit us-
ing bitwise operations, making label union and “meet” quite
fast.

LABELFLOW propagates labels on value copy by copying
the taint field from the origin value to the destination value.
Similarly, we have added support for all internal PHP arith-
metic, string, bitwise, copying, assignment and update op-
erators, so that the resulting value is labeled appropriately.
When the operands have different labels, we label the re-
sulting value using both, meaning that in the bit-vector rep-
resentation two bits will be enabled. Note that we do not
conflate labels even when they have a “meet” label in the
label graph.

Foreign function interface.

Unfortunately, the original implementation of taint prop-
agation in the PHP runtime engine that we used, does not
work with calling functions implemented in a third language.
This is a problem, as the default PHP runtime engine is bun-
dled with a rich set of standard functions called the stan-
dard API. Their functionality ranges from string processing
functions to database interfaces. These functions are im-
plemented in C for speed and thus do not use the PHP
operators to propagate labels from operands to results.

A possible solution would have been to manually modify
each of these functions to copy the labels of their parameters
to their return value. Although possible [35], this solution
is laborious and thus error prone. It also requires in-depth
understanding of the semantics of each function so that the
right labels are returned. Moreover, if more functions are

: CREATE TABLE (fname VARCHAR(100),
2 Iname VARCHAR(100),
3 address VARCHAR(255))
4

s INSERT INTO

7 table_name (fname, Iname, address)

s VALUES (1, 2, 3)

9

10 SELECT fname, Iname, address
11 FROM table_name
12 WHERE condition

Figure 5: *
(a) Original SQL code

: CREATE TABLE (fname VARCHAR(100),
2 Iname VARCHAR(100),
3 address VARCHAR(255),
4 label_ac SET(...) default 1)

¢ INSERT INTO
7 table_name (fname, Iname, address, label_ac)
s VALUES (1, 2, 3, label)

10 SELECT fname, Iname, address, label_ac
11 FROM table_name

12 WHERE ((label_ac | user_label)=user_label)
13 AND (condition)

Figure 6: *

(b) SQL code after rewriting

Figure 7: Example SQL queries, rewritten by LabelFlow.

later added to this standard library, it is up to the devel-
oper to implement label propagation in the new extended
function set. For the above reasons we implemented the fol-
lowing alternative solution. For all functions that belong
to the standard library, the return value is conservatively
labeled with the union of the labels of the arguments used
when the function was called. Moreover, to protect against
functions that return values by changing the state of their
arguments, we also label each argument with the union of all
labels of the arguments. This is potentially a very conserva-
tive approach, but it ensures that no information leak will
happen from the execution of the function. Since we cannot
track the information flow inside the function, we assume
each argument could have tainted each other argument or
the return value.

5.2 Database Modifications

Web applications almost always use persistent storage,
normally a relational database, where they reliably store
information essential for their normal operation. Currently,
LABELFLOW works with the MySQL database. To store
extra information in the database we need to extend the
schema with extra fields where the labels can be stored. We
believe that a reasonable trade-off between accuracy and
space on one hand, as well as easy-to-implement and easy-
to-manipulate on the other, is to store a label per row. That
means that all the fields in the same row are stored under
the same label, even if during execution their label ware dif-
ferent. To ensure that there is no information leakage, we
conservatively set the common label to be the union of all
labels of all fields of the tuple.

LABELFLOW performs the necessary modifications of the
database schema and any queries inserting and retrieving
data from the database, by automatically rewriting the cor-
responding queries. To extend the schema the CREATE TA-
BLE queries are also rewritten to have one additional column.
The INSERT queries populate that column and the SELECT
queries retrieve it. We use a custom SQL parser to parse
and modify all database queries at run time, including the
creation of a new schema during the installation of the ap-
plication.

Figure 7 shows a representative example of SQL rewrites.
The first query shown in Figure 7(a) (lines 1-3) originally
creates a table with three fields. LABELFLOW intercepts the

query and rewrites it as shown in Figure 7(b). The CREATE
TABLE query is rewritten to include an extra field to store
the label for each row, shown in Figure 7(b) (line 4). The
second query shown in (a), lines 6-8, inserts a tuple in the
table. LABELFLOW rewrites this to also insert a value in
the label field, shown in (b), lines 6-8. The label value
corresponds to the union of all fields’ labels. Finally, the
third query shown in (a), lines 10-12 performs a selection
on the table. We rewrite this to also constrain the row label
to the label of the user performing the query, shown in (b),
lines 10-13. Effectively, this creates a “view” (projection)
of the table depending on the label used to generate the
selection query. Note that we have used the equality test,
and a predefined user label in the example for the sake of
simplicity. Normally, the rewritten query tests for any label
up to the label used to perform the query, which can be an
arbitrary label depending on the policy implemented by he
application.

5.3 LaseLFrow library

LABELFLOW is implemented as a set of PHP functions
and classes that are easy to incorporate into the application.
Specifically, LABELFLOW provides the following functional-
ity: (i) A high level API where each application can register
meaningful names as labels, (ii) an API for constructing
the label graph discussed in Section 3.3, and (iii) a custom
database APIL.

Internally, the PHP engine encodes labels as integers stored
in internal data structures. This encoding may be efficient
but is very cumbersome to use in real applications. Also, it
is better if the internal representation of the labels is hidden
from the application to minimize hijacking attempts. At any
given moment the LABELFLOW stores the program counter
label, pc. The pc is the context under which the system
should evaluate its policy. Normally, when a user logs in the
application the pc is set to the user’s label. The pc defines
a privacy context that is taken into consideration regarding
which data should be accessible or not.

In most applications, the PHP engine usually terminates
after serving one request and restarts to serve the next one.
It is hard to hold information in the engine itself. For
that reason, LABELFLOW stores the mapping between the
application-level representation of the labels and the low-
level integer representation in a new table in the database.

Finally, LABELFLOW uses a second table to hold the label
graph.

The typical steps to integrate LABELFLOW in an existing
legacy application are the following.

1. Incorporate LABELFLOW with the application by in-
cluding LABELFLOW in the main file of the application
and instantiating the LABELFLOW object. The LABEL-
FLOW object constructor requires the credentials to a
database for storing its internal tables.

2. Define the principals and the label graph. Each ap-
plication defines different kinds of principals. For in-
stance in MediaWiki the principals are users, in Open-
Cart they are users and customers. The label graph
represents the relation between the principals. We as-
sume that the application provides mechanisms for cre-
ating and authenticating principals.

3. Extend the existing mechanism that creates principals
to associate a label with each new principal and insert
code to taint all data of the new principal with that
label.

4. Extend the existing authentication mechanism to ele-
vate the pc. Note that in the beginning of a web PHP
request the pc is public, while all users’ data in the
database are tainted with their respective label. So,
the authentication code will normally not be able to
retrieve any user information. To solve this problem
the programmer must call the authentication code us-
ing elevate. Inside elevate the pc has a special value
system, from which all data are accessible and authen-
tication is possible. This would be unsound in general,
we require any policy code used for authentication to
not have side effects. Namely, inside elevate the ap-
plication cannot perform state modifying queries like
INSERT or UPDATE; only SELECT. To defend against ma-
licious code injections that may call elevate to gain
unlimited access data, elevate cannot be called inside
eval (or any equivalent, using e.g., call_user_func).

6. EVALUATION

To test the engine overhead we used bench.php, the stan-
dard benchmark bundled with the engine, namely a loop of
CPU intensive operations, and thus closer to the worst case
than typical workloads. While the unmodified engine takes
an average (over 10 runs) of 21.4 seconds, the LABELFLOW
engine takes an average of 22.6 seconds, i.e., LABELFLOW
causes 5.6% overhead.

To test LABELFLOW’s applicability and ease of use, we
used three widely used applications: MediaWiki, the wiki
used by Wikipedia; WordPress, a blog hosting application;
and OpenCart, an e-commerce and store management ap-
plication. We run all experiments on a Pentium 4, 3.4GHz
workstation with 3 GB of memory running Linux 3.0.0-17.

6.1 MediaWiki

In MediaWiki, users modify the articles and create new re-
visions. Using LABELFLOW we implemented an access con-
trol policy where each user that creates a revision labels it
with his credential. Other users who wish to read the ar-
ticle have access only to the revisions accessible from their
credential.

0.8 E
w 06 f MediaWiki Vanilla - 4
[a) MediaWiki Taint ——
O 04 WordPress Vanilla 4
WordPress Taint
0.2 - OpenCart Vanilla - A
‘ OpenCart Taint

0 1 2 3 4 5
Latency (sec)

Figure 11: *

(a) User login.
1

0.8 -
w 06 MediaWiki Vanilla - e
[a) MediaWiki Tajnt
O 04t WordPress Vanilla 4
WordPress Taint
0.2 - OpenCart Vanilla - B
\ OpenCart Taint

0 :
0 1 2 3 4 5

Latency (sec)

Figure 12: *
(b) Full page load.

Figure 13: Cumulative Distribution Function (CDF)
of the time for two kinds of requests.

For instance, Figures 10(a) and 10(b) show an article as
viewed by two different users. The article is a progress re-
port about a project. The first user 10(a) is a contributor
to the project with low level clearance, and thus, can edit
the details about the scope and the goals of the project and
their changes will affect all other users accessing the arti-
cles. The second user is a high-level manager in charge of
the project. The manager has higher level clearance, which
allows them to see and edit the whole article, including the
budget section. The budget section includes sensitive infor-
mation about the economics of the project that should be
kept secret. Any changes done by the manager in this article
are going to be visible only by the users that have equal or
higher level access than the manager. Those users will have
labels that are more restrictive than the ones assigned to the
manager, corresponding to “higher-up” in the label lattice.

The MediaWiki page provides a set of common security
limitations [16]. For some, MediaWiki offers suggestions on
how to overcome them. We focused on the ones that offer no
such suggestions (see Table 1). To the best of our knowledge
LABELFLOW is able to offer protection against all of these
vulnerabilities.

The necessary modifications to enforce the policy on Medi-
aWiki were fairly straightforward, totaling around 100 lines
of additional code in a code base of over 100,000 lines. More-
over, they were often made apparent by helpful error mes-
sages while migrating to LABELFLOW, when MediaWiki en-
countered an error. We measured the overhead that our
changes impose to MediaWiki. To study the cost that our
modifications have on the end-user experience, we measure
the time needed to login and load an article, two represen-
tative operations. We performed 200 requests of each and
measured response time.

Figure 13 (a) shows the time needed to log into the ap-
plication. The login operation requires a database query to
retrieve the information of the user and check that the pass-

[edit] Project Report

[edii] Project Description

1. Introduction.
2. Motivation.
3. Related Work.

[edit] Action Points
1. Short term goals.

2. Medium term goals.
3. Long term goals.

Figure 8: *
(a) View of project member

[edit] Project Report

[edii] Project Description

1. Introduction.
2. Motivation.
3. Related Work.

[edit] Action Points

1. Short term goals.
2. Medium term goals.
3. Long term goals.

[edit] Budget

1. Fiscal year 1.
2. Fiscal year 2.
3. Fiscal year 3.

Figure 9: *
(b) View of project manager

Figure 10: The same page of our wiki as seen by two different users with different authorizations.

Type Vulnerability Fixed with
LabelFlow

Can the revids parameter for action=query be used to fetch revisions that should

API . Yes
be hidden?

Author backdoor Some extensions .al\fvays allow the original author of a page to access it, ignoring Yes
later access restrictions.

Redirects Some extensions .al\fvays allow the original author of a page to access it, ignoring Yes
later access restrictions.
Can a user use other extensions to view part of a page? Think of Dynamic-

Other extensions | PageList or Semantic MediaWiki, which provide ways to query the database for Yes
certain pages or properties.

Table 1: Common Vulnerabilities

word is correct. When no user is logged in, LABELFLOW
labels all data as public and performs all operations using
the public label. The “public” label is a hard-coded value de-
signed to represent the bottom of the label graph. All users
can read data having the public label, but any user using
the public label to request data can only see public data.
Figure 13 (b), shows the total time needed to retrieve an ar-
ticle from the database. MediaWiki must retrieve the user’s
information based on their cookie, find the appropriate revi-
sion for the particular article for the user and finally retrieve
the text. In both experiments, LABELFLOW imposes only a
small overhead, because of its efficient label representation
and fast query rewriting.

6.2 WordPress

WordPress is a popular open source blogging tool based
on PHP and MySQL. In contrast to MediaWiki, WordPress
offers an extensive set of roles ranging from Administrator,
who has complete control over all aspects of the application,
to Subscribers, who can only control their profile. Moreover,

blog authors can limit the visibility of their profiles to se-
lective users of the application. We used LABELFLOW to
enforce this policy on WordPress, and compare it with the
native implementation. We noticed that the existing system
has one limitation:

“WARNING: If your site has multiple editors or
administrators, they will be able to see your pro-
tected and private posts in the Edit panel. They
do not need the password to be able to see your
protected posts. They can see the private posts in
the Edit posts/Pages list, and are able to modify
them, or even make them public. Consider these
consequences before making such posts in such a
multiple-user environment.” [33]

In WordPress, users do not create accounts for themselves,
they instead rely on the administrator to create the accounts
for them. Thus, initially the administrator must have access
to user data, but should drop it as soon as possible. We en-
coded this behavior by having the administrator code create
a new label for the new user, use it to taint all user data and

then delete the label to make it inaccessible to the admin-
istrator. In total, to integrate LABELFLOW into WordPress,
we added 60 lines of code.

6.3 OpenCart

OpenCart is an e-commerce and online store-management
software program. In OpenCart, system administrators add
products available for purchase, and customers place orders
and write reviews about the products they have purchased.
OpenCart follows the MVC model, where the code is divided
into three categories: Model, View and Controller. Model is
the database abstraction layer, View is responsible for the
presentation of the information and Controller implements
the application logic. Despite the difference in the architec-
ture, we were able to integrate LABELFLOW easily in less
than 60 lines of code, so that an administrator could limit
the visibility of products to a audience of their choice.

6.4 Comparison with Resiv

100000 ¢ T T 1
r resin I
resin_baseline
% 10000 - labelflow m— 3
2 | labelflow_baseline =
3 1000 E
c [
o
O + 4
b 100 - -
8 L 4
L L i
E 10 +]
) L
assign call concat add insert select
operation
Figure 14: *
(a) Microbenchmark performance.
1000 ‘ T \

S resin I
o labelflow
o 100
©
[}
<
g
3 10
9]
(o)}
8
S 1
I~
[}
[oX

assign call concat add insert select

operation

Figure 15: *
(b) Overhead imposed by each system over its baseline.

Figure 16:
Resin.

Comparison between LabelFlow and

RESIN [35] is an information-flow system for PHP that
uses assertion-based data flow. Assertions are pieces of code
that implement the desired security or privacy policy for
each piece of data. From a programmer’s perspective, writ-
ing such assertions requires deep understanding of the appli-
cation, its execution paths and its data structures, since the

assertions are application-specific pieces of code. In compar-
ison, implementing security and privacy policies in LABEL-
FLow requires knowledge of the framework rather than the
application, our policies are more application-agnostic.

Yip et al. report a performance overhead of 33% running
RESIN in the HotCRP conference management application.
LABELFLOW incurs a much lower overhead on running Me-
diaWiki (see Figure 13). To further compare the perfor-
mance of overhead of RESIN and LABELFLOW, we run a
series of microbenchmark tests for both on the same sys-
tem. Figure 16 presents the results. We have compared
RESIN, LABELFLOW and their corresponding “original” ver-
sions of PHP. For RESIN, the original version is PHP5.2.5;
for LABELFLOW, it is PHP5.2.17. Overall, we found that
LABELFLOW is significantly faster on SQL operations.

7. RELATED WORK

Tainting analysis [34] and flow tracking are both very ac-
tive research fields. The academic literature is rich. The
closest research effort to LABELFLOW is RESIN [35]; a lan-
guage runtime that supports dynamically checking asser-
tions in PHP and Java programs. RESIN requires the pro-
grammer to write policy assertions and modifies the PHP
runtime engine to dynamically check and enforce the de-
scribed policies. To do that, it performs dynamic tracking
of application data, similar to information flow tracking in
LaBeLFLow. LABELFLOW provides an application agnos-
tic representation of the policy which we believe is easier
to implement in legacy systems. Measurements have shown
that LABELFLOW adds a smaller overhead to the application
than RESIN. DBtaint [7] adds information flow tracking in
the Perl and Java database API. Similarly to LABELFLOW,
DBTaint replaces each piece of data in the database with
a composite representation of the data and its taint value.
It then dynamically rewrites queries to extract the taint bit
or data value as required. LABELFLOW also uses dynamic
SQL rewriting to insert labels into the database. It, how-
ever, labels the whole row in a table on INSERT and UPDATE
queries, whereas it ignores rows with higher labels on SE-
LECT. To facilitate porting legacy code, we also perform dy-
namic rewriting of CREATE TABLE queries, so that all changes
in the schema are transparent and no database code needs
to be rewritten in the application.

The research community has identified intrinsic problems
in taint analysis [25], nevertheless, there is active research
towards more efficient and faster frameworks [2]. More par-
ticularly, tainting has been extensively used in various pro-
posals for securing a wide range of systems. Newsome et
al., have proposed dynamic tainting analysis for detecting
exploits on commodity systems [22], privacy leakage in the
cloud environment [36] and in smartphones [8]. Tainting
has been also used solely in securing web applications [31,
21, 23], and, partially, for detecting and preventing code-
injection attacks [20, 24]. However, all of these frameworks
target very precise problems, such as cross-site scripting [31]
and SQL injection, or apply selectively to an isolated layer
of the complete system. For example, tainting is used to in-
vestigate if the DOM of a web page has been infiltrated by
foreign data [20]. LABELFLOW follows a generic approach
for enhancing web applications with information flow capa-
bilities.

There are multiple static and dynamic systems for con-
trolling information flow. SELinks [6] is a security-enhanced

version of the Links web-programming language, extended
with support for typed labels. SELinks supports persis-
tent labels through the database, since all client, server, and
database code is generated by the Links compiler from the
same SELinks web-program. Jif [19, 17] is an extension of
Java with support for label-based information flow. It uses
a combination of type-checking [37], static analysis and run-
time checks to enforce information-flow policies in Jif pro-
grams. Banerjee and Naumann [1] present a similar static
type-checking system for statically checking label-based poli-
cies in object oriented languages. Functional languages like
Fable, Fine and F* [29, 28, 26] support complex, dependent
label types that are capable of expressing and enforcing com-
plicated policies, dynamic label creation.

Taint analysis is an important sub-problem of information
flow, and has been studied extensively in the past. Static
taint analysis [10, 15] for C and Java use type-based static
analysis to infer tainting for all possible static labels in the
program, providing sound guarantees, although they suffer
from false positives. Dynamic taint analysis for Perl® [32]
and Java [11] change the interpreter or VM to track taint-
ing information per unit of data, either per character or
per object. Php-Taint [30] extends the PHP engine with
similar per-object support, although it is not fully main-
tained in the current PHP engine. In LABELFLOW, we ex-
tended PHP-Taint with support for arbitrary labels, exter-
nal C library functions and the PHP foreign function inter-
face, as well as more language primitives. Many systems
have been proposed in the past for controlling information
flow in the database. LABELFLOW supports row-level label
granularity, similarly to row-level security supported by sev-
eral commercial relational databases. Li and Zdancewic [14]
present a label-based formal system for checking information
flow through the database in web applications and prove its
safety.

8. CONCLUSIONS

Web applications are highly complex and sophisticated,
usually composed of many diverse components and layers,
and often written in different languages. This makes it hard
for the programmer to change an existing web application to
control information flow or adhere to a specific privacy pol-
icy. This paper presents LABELFLOW, a system for dynamic
information flow tracking on web applications in PHP. LA-
BELFLOW improves security and privacy in legacy web ap-
plications using label-based information flow. LABELFLOW
handles the multi-tier architecture usually found in web ap-
plications; it transparently extends the database schema to
associate information flow labels with every row; it extends
the PHP bytecode interpreter to transparently track labels
at runtime; and it combines the two, so that the program-
mer need only implement the policy code with minimal, or
even zero, changes to the rest of the legacy application.

We evaluated LABELFLOW on three large real-world web
applications. With minimal code changes, LABELFLOW was
able to enforce complex policies with minimal overhead. Fi-
nally, we have formally proven that our extensions protect
against information leakage.

9. REFERENCES

http://perldoc.perl.org/perlsec.html#Taint-mode

[1] Anindya Banerjee and David A. Naumann. Secure
information flow and pointer confinement in a java-like
language. In Proceedings of the 15th IEEE workshop
on Computer Security Foundations, 2002.

[2] Erik Bosman, Asia Slowinska, and Herbert Bos.
Minemu: The world’s fastest taint tracker. In
Proceedings of RAID’11, Menlo Park, CA, September
2011.

[3] D. Brumley and D. Boneh. Remote timing attacks are
practical. In Proceedings of the 12th conference on
USENIX Security Symposium - Volume 12, pages 1-1,
2003.

[4] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-Channel Leaks in Web Applications: A
Reality Today, a Challenge Tomorrow. In Proceedings
of the 2010 IEEE Symposium on Security and
Privacy, SP ’10, pages 191-206, Washington, DC,
USA, 2010. IEEE Computer Society.

[5] Georgios Chinis, Polyvios Pratikakis, Elias
Athanosopoulos, and Sotiris Ioannidis. Practical
information flow for legacy web applications. Technical
Report 428-Apr-2012, Foundation for Research and
Technology - Hellas, April 2012.

[6] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks.
Cross-tier, label-based security enforcement for web
applications. In SIGMOD, July 2009.

[7] Benjamin Davis and Hao Chen. Dbtaint:
Cross-application information flow tracking via
databases. In Proceedings of the 2010 USENIX
conference on Web application development, 2010.

[8] William Enck, Peter Gilbert, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX
conference on Operating systems design and
implementation, OSDI'10, pages 1-6, Berkeley, CA,
USA, 2010. USENIX Association.

[9] Federal Trade Commission. Facebook settles ftc
charges that it deceived consumers by failing to keep
privacy promises. http://www.ftc.gov/opa/2011/11/
privacysettlement.shtm, November 2011.

[10] Jeffrey S. Foster, Robert Johnson, John Kodumal, and
Alex Aiken. Flow-Insensitive Type Qualifiers. ACM
Transactions on Programming Languages and
Systems, 28(6):1035-1087, November 2006.

[11] Vivek Haldar, Deepak Chandra, and Michael Franz.
Dynamic Taint Propagation for Java. In Proceedings
of the 21st Annual Computer Security Applications
Conference, 2005.

[12] C. Kambalyal. 3-tier architecture.
http://channukambalyal.tripod.com/
NTierArchitecture.pdf, 2010.

[13] L.A Times. Bank of america data leak destroys trust.
http://articles.latimes.com/2011/may/24/
business/la-fi-lazarus-20110524, May 2011.

[14] Peng Li and Steve Zdancewic. Practical
information-flow control in web-based information
systems. In Proceedings of the 18th IEEE workshop on
Computer Security Foundations, 2005.

[15]

[16]

28]

[29]

V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications with static
analysis. In Proceedings of the 15th conference on
USENIX Security Symposium - Volume 15, 2005.
MediaWiki.org. Security issues with authorization
extensions. http://www.mediawiki.org/wiki/
Security_issues_with_authorization_extensions,
August 2011.

A. C. Myers. Jflow: practical mostly-static
information flow control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1999.

A. C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Trans.
Softw. Eng. Methodol., 9(4):410-442, October 2000.
A. C. Myers, N. Nystrom, L. Zheng, , and

S. Zdancewic. Jif: Java information flow.
http://www.cs.cornell.edu/jif, July 2001. Software
Release.

Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In In Proceedings of the Network
and Distributed System Security Symposium, 2009.

S. Nanda, L.C. Lam, and T. Chiueh. Dynamic
Multi-Process Information Flow Tracking for Web
Application Security. In Proceedings of the 2007
ACM/IFIP/USENIX international conference on
Middleware companion, 2007.

J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In In
Proceedings of the Network and Distributed System
Security Symposium, 2005.

Anh Nguyen-tuong, Salvatore Guarnieri, Doug
Greene, Jeff Shirley, and David Evans. Automatically
Hardening Web Applications Using Precise Tainting.
In In 20th IFIP International Information Security
Conference, pages 372—-382, 2005.

R. Sekar. An Efficient Black-box Technique for
Defeating Web Application Attacks. In In Proceedings
of the Network and Distributed System Security
Symposium, San Diego, CA, February 8-11, 2009.
Asia Slowinska and Herbert Bos. Pointless tainting?
evaluating the practicality of pointer tainting. In
Proceedings of ACM SIGOPS EUROSYS, Nuremberg,
Germany, March-April 2009.

Pierre-Yves Strub, Nikhil Swamy, Cedric Fournet, and
Juan Chen. Self-certification: Bootstrapping certified
typecheckers in F* with Coq. In Proceedings of the
89th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2012.

G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow
tracking. In Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems., 2004.

Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing
stateful authorization and information flow policies in
fine. In Proceedings of the 19th European conference
on Programming Languages and Systems, 2010.

Nikhil Swamy, Brian Corcoran, and Michael Hicks.
Fable: A language for enforcing user-defined security

(30]

(31]

(32]

33]

(34]

35]

(36]

37]

(38]

policies. In Proceedings of the 2008 IEEE Symposium
on Security and Privacy, 2008.

Wietse Venema. Taint support for PHP, April 2011.
https://wiki.php.net/rfc/taint. Last visited on
January 2012.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,

C. Kruegel, and G. Vigna. Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In In Proceedings of the Network and
Distributed System Security Symposium, 2007.

L. Wall, T. Christiansen, and J. Orwant. Prog. Perl.
O’Reilly, 3 edition, 2000.

Wordpress.org. Content visibility.
http://codex.wordpress.org/Content_Visibility,
August 2011.

Wei Xu, Eep Bhatkar, and R. Sekar. Taint-Enhanced
Policy Enforcement: A Practical Approach to Defeat a
Wide Range of Attacks. In Proceedings of the 15th
conference on USENIX Security Symposium - Volume
15, pages 121-136, 2006.

Alexander Yip, Xi Wang, Nickolai Zeldovich, and

M. Frans Kaashoek. Improving application security
with data flow assertions. In Proceedings of the 2009
IEEE Symposium on Security and Privacy, pages
291-304, 2009.

Angeliki Zavou, Georgios Portokalidis, and Angelos D.
Keromytis. Taint-exchange: a generic system for
cross-process and cross-host taint tracking. In
Proceedings of the 6th International conference on
Advances in information and computer security,
IWSEC’11, pages 113-128, Berlin, Heidelberg, 2011.
Springer-Verlag.

S. Zdancewic and A. C. Myers. Secure information
flow and CPS. In ESOP, 2001.

K. Zhang, Z. Li, R. Wang, X.F. Wang, and S. Chen.
Sidebuster: automated detection and quantification of
side-channel leaks in web application development. In
Proceedings of the 17th ACM conference on Computer
and communications security, pages 595—606, 2010.

