International Journal of Information Security
https://doi.org/10.1007/s10207-024-00979-w

(2025) 24:73

REGULAR CONTRIBUTION r')

Check for
updates

Fuzzing frameworks for server-side web applications: a survey

| Putu Arya Dharmaadi'? . Elias Athanasopoulos? - Fatih Turkmen'

© The Author(s) 2025

Abstract

There are around 5.3 billion Internet users, amounting to 65.7% of the global population, and web technology is the backbone
of the services delivered via the Internet. To ensure web applications are free from security-related bugs, web developers
test the server-side web applications before deploying them to production. The tests are commonly conducted through the
interfaces (i.e., Web API) that the applications expose since they are the entry points to the application. Fuzzing is one of
the most promising automated software testing techniques suitable for this task; however, the research on (server-side) web
application fuzzing has been rather limited compared to binary fuzzing which is researched extensively. This study reviews
the state-of-the-art fuzzing frameworks for testing web applications through web API, identifies open challenges, and gives
potential future research. We collect papers from seven online repositories of peer-reviewed articles over the last ten years.
Compared to other similar studies, our review focuses more deeply on revealing prior work strategies in generating valid
HTTP requests for attack surface exploration, utilising security feedback from the Web Under Tests (WUTs), and expanding
input spaces to uncover more security-related bugs. The findings of this survey indicate that several crucial challenges need to
be solved, such as less effective web instrumentation and the complexity of handling microservice applications. Furthermore,
some potential research directions are also provided, such as fuzzing for web client programming. Ultimately, this paper aims

to give a good starting point for further research in web API fuzzer.

Keywords Fuzzing - Web application - Web API - Survey

1 Introduction

Fuzzing is an automated software testing technique that
focuses on finding bugs, errors, or faults in the software under
test (SUT) [93] by creating many test cases in the form of
malformed/semi-malformed inputs and feed them into the
SUT without requiring human intervention. The inputs are
produced by employing a variety of techniques (e.g., muta-
tion) with the idea of triggering software vulnerabilities that
manifest themselves in the form of a crash. Since fuzzing has
excellent potential to discover security-related vulnerabilities
[103], fuzzing of binary applications has been studied exten-
sively that led to the development of a plethora of binary

< I Putu Arya Dharmaadi
arya.dharmaadi@rug.nl

Fatih Turkmen

f.turkmen @rug.nl

University of Groningen, Groningen, The Netherlands
Udayana University, Bali, Indonesia

University of Cyprus, Nicosia, Cyprus

Published online: 05 February 2025

fuzzers such as American Fuzzy Lop (AFL) [94] and lib-
Fuzzer [58], and a yearly competition [32].

While the research on binary fuzzing has made impressive
strides, the research on fuzzing of web applications is only
recently picking up and the existing work to date has been
scattered. This is surprising because web applications are
ubiquitous as most governments and companies provide their
services through the World Wide Web that allows access from
a plethora of devices including desktop computers, mobile
phones and tablets. According to a study by Cloudflare in
December 2021 [50], around 25% of all API traffic in its net-
work is web related traffic and is twice as likely to be blocked
than other API requests. More strikingly, the development
and maintenance of web applications has a huge market size
(56B$ in 2021 and is expected to rise up to 89B$ by 2027)
so the testing of web applications for security vulnerabilities
has a significant commercial value.

Web application fuzzing has its own challenges, and many
techniques from binary fuzzing are not directly applicable.

1 https://www.businessresearchinsights.com/market-reports/web-
development-market- 109039

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-024-00979-w&domain=pdf
https://www.businessresearchinsights.com/market-reports/web-development-market-109039
https://www.businessresearchinsights.com/market-reports/web-development-market-109039

73 Page2of28

I. P. A. Dharmaadi et al.

For instance, web APIs only accept valid HTTP requests to
be executed, which means that the malformed test cases com-
monly produced by fuzzers will be rejected by web servers.
This condition made some of the existing web API fuzzers
(e.g., RESTIer [12] and RestTestGen [21]) utilise OpenAPI
specifications to create templates for HTTP requests which
are then rendered with the correct values to form valid HTTP
request sequences. However, there is a lack of research
exploring novel techniques to uncover various web vulnera-
bilities as listed in the OWASP API Security Risks [74].

In this paper, we conduct a review to summarise the exist-
ing works on web API fuzzing while analysing their strengths
and limitations. From a more practical point of view, our
study reveals how prior works designed strategies to gen-
erate valid HTTP requests for attack surface exploration,
utilise security feedback from the web under test (WUT),
and expand relevant input spaces to uncover more security-
related bugs, which are all crucial for the effectiveness of
fuzzing. Finally, we identify five areas of challenges that need
to be addressed in order to improve fuzzing effectiveness and
efficiency in web applications and four potential research
directions that can be massively studied in the future.

1.1 Research questions

In organizing our paper, we employed the following research
questions (RQ), which are grouped according to various
objectives.

Producing valid HTTP requests for attack surface explo-
ration

— RQ1: What techniques are used to generate valid
request templates?
— RQ2: How are the request templates rendered?

Observing security feedback

— RQ3: What types of security-relevant feedback are
collected from the WUT?

— RQ4: How are WUTs instrumented to capture security-
critical behaviors and responses?

— RQS5: What vulnerabilities are observed?

Input space expansion

— RQ6: How are the existing input spaces expanded to
uncover deeper or previously unseen security vulner-
abilities?

Security-focused evaluation

— RQ7: What security benchmarks are used for empir-
ical evaluations?

— Open challenges

@ Springer

— RQ8: What open challenges are identified?
1.2 Scope, related works, and contributions

Web application fuzzing is similar to web vulnerability scan-
ning in terms of their approaches. Since we aim to review
fuzzing strategies, this section first clarifies the differences
between the fuzzer and the scanner, in general, to make it
clear. In addition, since the fuzzing-related review topic is
packed, this section then stresses the uniqueness of this work
compared to other survey papers. Finally, a summary of our
contributions is provided in the last part.

1.2.1 Fuzzer vs vulnerability scanner

Both fuzzers and vulnerability scanners work automatically
to find software vulnerabilities. However, there are certain
differences between as we discuss in this section. While a
fuzzer produces plenty of malformed/semi-malformed inputs
to make a software crash and let the software developers iden-
tify any vulnerability including completely unknown, i.e.,
zero-day vulnerability, behind the crash [57] [48], a scan-
ner injects web APIs with malicious payloads sourced from
manually curated templates for finding pre-defined security
vulnerabilities, such as SQL injection and XSS [3] [82].
Nevertheless, this distinction becomes increasingly blurred
because, recently, there have also been vulnerability-driven
fuzzers aiming to find certain vulnerabilities rather than just
a crash (explained in Section 4.2.2). Another difference is
that a fuzzer performs dynamic testing using either a black-
box, grey-box, or white-box approach [17]; meanwhile, the
(dynamic) scanner works from outside of the target (i.e., only
uses the black-box approach) as per OWASP description
[86] [92]. Therefore, scanners cannot identify the security
vulnerabilities that cannot be uncovered by the black-box
approach. Besides these limitations, the fuzzers incorporate
more sophisticated strategies such as instrumentation than
the scanners do, making the fuzzer can trigger more unex-
pected security vulnerabilities. This survey focuses more on
fuzzing, which can be black-box, grey-box, or white-box,
used for revealing web application vulnerabilities.

1.2.2 Related works

We identified several works that are similar to this study in
the last ten years. Based on their focus, those works can be
grouped into either general fuzzing or web API testing. First,
some survey papers focused on the fuzzing approach in gen-
eral, which is not explicitly intended for a specific platform,
so their focus is different from ours. For example, the work of
Chen et al. [17] and Li et al. [54] focused on exploring tech-
niques for improving fuzzing in general. Another example
is the work of Zhu et al. [103], which reviewed the knowl-

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page3of28 73

edge gaps of general fuzzing. Instead of reviewing fuzzing in
general, our work explores more specific fuzzing approaches
tailored for web applications, which utilises web resources
that cannot be found in other application domains. Second,
several works are done to review web API testing, such as the
work of Martin-Lopez et al. [66], Zhang et al. [98], and Gol-
mohammadi et al. [40]. Their works are quite similar to ours;
however, their main review focuses are different because our
survey focuses on revealing prior work strategies seen from
the fuzzing approaches: generating valid HTTP requests
for attack surface exploration, utilising security feedback
from the WUTSs, and expanding relevant input spaces (see
Table 1).

1.2.3 Contribution
To conclude, our study’s contributions are as follows.

1. We review existing fuzzing studies specially designed for
web application security testing through web API. We
investigate their strategies for input generation, muta-
tion, and feedback utilisation.

2. We analyse security benchmarks used mostly for empiri-
cal evaluations.

3. We identify the remaining challenges that need to be
solved.

4. We give some insights for future research directions.

2 Background

This section explains server-side web applications and the
basic theory of fuzzing.

2.1 Server-side web application and web API

The server-side web application is the application running on
the web server that executes any requests sent by the client
[56] (see the illustration in the Figure 1). It works together
with the web server to filter out broken or malicious request
formats. We then only use the term “web application” to
refer to server-side web applications for ease of reference.
The client sends requests to the web application through
the web API, an interface enabling other users, like humans
or programs, to access the web application functions through
the computer network [46]. The most popular paradigm for
accessing HTTP-based web API is Representational State
Transfer (RESTful) [16]. RESTful is an architectural style
in the web application to represent a standard interface that
enables the client to interact with or manipulate specific
resources [29]. RESTful APIs are supposed to be stateless;
however, since they are connected to stored systems, such as
databases or cache, they can be seen as stateful systems.

===y == ———y

F'HTML ' CSS ' Js !
1 1

——HTTP Request—> | \vep server
<€«—HTTP Response——

Web browser DBMS

Operating system Operating system

Client machine Server machine

Fig. 1 Web application overview. The dashed boxes are called client-
side web applications, while the dotted ones are called server-side web
applications or only ”web applications” for ease of reference

As explained below, researchers utilised several web API
attributes to develop a web API fuzzing framework.

2.1.1 HTTP methods and response codes

Clients request the web API using various HTTP meth-
ods defined in the HTTP standard. Consequently, fuzzing
researchers considered this rule to develop a test case gen-
erator producing valid input data. The four most commonly
used methods related to web resource management are GET,
POST, PUT, and DELETE [79]. After sending the request
using one of the methods, the web server replies to the client
with an HTTP response code. It is a three-digit code pro-
duced by the web application to help a client generally know
what happened after processing the client request [79]. Most
web fuzzers utilise this information to decide whether their
mutated input triggered a particular web behaviour. The most
common response codes are explained as follows.

— 2xx (OK): describing successful processing of the request
and the web replies with intended resources.

— 4xx (Bad Request): describing the client’s request may
be incorrect or malformed.

— 5xx (Internal Server Error): describing a problem hap-
pening in the web application caused by the client’s
request.

2.1.2 Open-API specification

To help software developers comprehend web API usage,
web API developers should provide standard documentation.
Many tools and technologies related to API documentation
are available, making the developer easy in preparing the
documentation, such as RESTful API Modeling Language
(RAML)?, Swagger 3, API Blueprint*, and others [22]. Ope-
nAPI Specification, formerly known as Swagger, has been
the official standard for documenting web RESTful API
because of its mass adoption [34]. Therefore, most fuzzing

2 http://raml.org/

3 http://swagger.io/
4 https://apiblueprint.org/

@ Springer

http://raml.org/
http://swagger.io/
https://apiblueprint.org/

73 Page4of28

I. P. A. Dharmaadi et al.

Table 1 Comparison of this survey paper to other similar reviews in web API testing

Paper Main focus Samples of the results
[66] Black-box API testing (e.g., failure detection capability) Experimental results on failure detection and fault
detection capabilities in 13 online APIs under test
[40] REST API testing approaches Metrics for evaluating API testing effectiveness (e.g.,
coverage), testing techniques (e.g., black-box and
white-box), kind of testing (e.g., system testing)
[98] Empirical assessment and open technical problem Empirical comparison and technical analysis of seven
analysis state-of-the-art web API fuzzers
This paper Adjusted fuzzing strategies for Web API Diverse techniques for generating valid HTTP requests

(Section 5.1 and 5.2), utilising feedback from the
WUTs (Section 5.3), and expanding relevant input
spaces (Section 5.4)

frameworks focused on applications with an OpenAPI spec-
ification to generate valid test cases. The example of the
OpenAPI specification with some essential components in
version 3.1.0 written in YAML format is listed in Appendix
A.

The crucial points most concerned by the web API fuzzer
are the endpoint, method, and parameter. Endpoint (line 5
of Appendix A) is a path string pointing to a specific URL
of the API that can be followed by a token and/or an argu-
ment [59]. Method (line 6) refers to the HTTP methods like
GET or POST, and the Parameter (lines 7-15) is data formed
key-value pairs sent to the API server. One endpoint can be
called using different methods, so the API server treats each
endpoint-method combination differently.

2.2 Fuzzing

Fuzzing, standing for fuzz testing, is an automatic software
testing intended to find vulnerabilities or bugs, first proposed
by Miller et al. [72] in 1988. The main ideas of this testing
are automatically producing a huge amount of input data,
injecting them into the software under test (SUT), and then
watching the software’s behaviour, whether it results in a
crash, fault, or hang [57]. Algorithm 1 illustrates the fuzzer
process using the mutation-based approach (explained in
Section 2.2.1). First, a fuzzer calls a mutation method to pick
arandom seed from the corpus and to produce an input (line
5). Then, the fuzzer injects the input into SUT and gets feed-
back (line 6). Lastly, the fuzzer stores the input if the feedback
contains an error or is interesting (lines 7-13). The original
fuzzing approach proposed in 1988 has become extremely
competent with recent developments. Instead of producing
genuinely random inputs, additional techniques were pro-
posed to make it more intelligent in finding error-triggering
inputs, such as program instrumentation [54]. Based on the
available knowledge about the SUT (e.g., source code),
fuzzing can be classified into three categories: Black-box,
Grey-box, and White-box [17]. While the fuzzing model run-

@ Springer

ning without having access to the SUT’s source code was
grouped into the black-box fuzzing, the rest that have vary-
ing levels of information are classified as either grey-box or
white-box fuzzing. If the fuzzing methods only instrument
the code for obtaining coverage information at runtime, they
are considered the grey box. Otherwise, they are white-box.

Algorithm 1 Mutation-based fuzzer process, extracted from

(4]

Require: s, /

> Set the software under test and samples of the input

I: O «<¥ > Initialize Output set
2:B <0 > Initialize Bug set
3:C <« 1 > Corpus set is filled with input sample

4: while true do
5: i < Mutate(C) > Get an input from mutation process
6: feedback < Inject(i,s) > Get the feedback from the

execution
7 if feedback contains error then
8: C <« CUi > Save the input into Corpus
9: 0O« 0Ui > Save the input into Output
10: B <~ BUo > Save the output into Bug
11: elseif feedback is interesting then > e.g., feedback score is
high
12: C <« CUi > Save the input into Corpus
13: endif

14: end while
15: return B, O

The following sections will explain the common fuzzing
approaches used in web API testing.

2.2.1 Mutation-based input generation

Mutation-based fuzzing is the most common fuzzing tech-
nique that takes valid input data and then creates new inputs
by making small, random changes (mutations) to the input
[63]. Several common mutations can be applied to the
input data, such as flipping some bits, inserting or deleting
characters, and changing the order of existing bytes. This
mutation-based input is straightforward because it does not

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page50f28 73

require any knowledge of the software under test and can be
used in a black-box testing scenario. However, since the qual-
ity of the initial inputs significantly influences the fuzzing
performance, having a diverse set of well-formed seed inputs
is crucial to begin the fuzzing process [37]. That kind of input
can help fuzzer to explore more execution paths quickly. In
the context of web API testing, fuzzing is adjusted to adopt
more mutation strategies. The mutation can change the HTTP
request order in a sequence, HTTP request structure, or HTTP
parameter values. These techniques will be explained in more
detail in Section 5.4.

2.2.2 Grammar-based input generation

Mutation-based fuzzing demands at least one initial valid
input from the user and mutates it to produce plenty of
input. However, recent development shows that a fuzzer can
employ another way to work as the input generator. It is
grammar-based fuzzing, an approach to generate valid input
data by employing a grammar that specifies the structure and
constraints of the input data [63]. The work of Pezze and
Young [77] called this approach specification-based testing
because it generates test cases based on the test specification
(i.e., grammar). In certain applications, grammar creation
is greatly assisted by the supporting documents that are an
integral part of certain domains. For example, in the web API
context, a fuzzer can employ a grammar model deduced from
the OpenAPI Specification or HTML documents (explained
in Section 5.1) in order to produce valid API requests. The
grammar created in this context consists of request type,
server endpoint, and required parameter names, which are
set up as static, and required parameter values that are fuzz-
able or replaceable (see Appendix B). So, when calling this
grammar to build one valid HTTP request, the fuzzer copies
the static data and changes the fuzzable data to concrete val-
ues that can be obtained from various sources, such as a
dictionary [85]. In addition, the fuzzable data can also be
created by applying the mutation-based strategies—referred
to as grammar-aware mutation [88]—to make the gener-
ated inputs more varied and valid. In a nutshell, implementing
grammar-based input generation helps the fuzzer to produce
HTTP requests that strictly match the rules or specifications.

3 Survey methodology

This section presents the methodology used in collecting and
filtering the paper in the literature search.

3.1 Searching papers

We review papers issued in seven research article reposito-
ries: ACM Digital Library, IEEE Explore, Science Direct,

Wiley, Web of Science, MIT Libraries, and Springer because
those are well-known publication venues storing top articles
on computer science topics. In addition, most similar sur-
vey papers we mentioned in Section 1.2 used those for the
article sources. Since our scope is existing fuzzers specially
designed for web application security testing through web
API, we used keywords, namely fuzzing, web, REST,
API, security, vulnerability, and testing, and
formulated them into different query syntax (see Table 2) to
search relevant papers specifically on the repositories. We
limited our search to the last ten years (2013-2023) to obtain
the most recent studies. We applied additional filters in the
repositories to show only research articles. We also paid
attention to double-indexed articles (e.g., indexed in ACM
and IEEE) to count them as one.

3.2 Manual filtering of the collected papers

Papers whose main ideas do not propose or improve a fuzzer
must be dropped. To remove such papers from the paper
collection, we scanned the paper abstract, experiment, and
result sections. We paid attention to those sections because
papers focusing on developing web API fuzzers generally
tested their frameworks for any web application and showed
their experimental results. If there is no experimental result,
we consider the paper not to propose a new improvement
method and then drop it from the collection. Specifically,
papers were excluded because of one of the following rea-
sons:

1. They were survey or review papers.

2. They only conducted empirical studies to compare other
studies without proposing a new framework.

3. Instead of a web application, they intended to test the
browser, applications, or other engines.

4. They intended to test specific application APIs (e.g.,
machine learning APIs or interpreter APIs).

5. They do not do server-side web application testing but
rather client-side testing or Ul testing.

6. They mentioned web API testing and fuzzing, but their
main topic is not web API testing techniques (e.g., they
conduct short-campaign testing for analysis purposes).

3.3 Collection expansion

After performing the methodology explained in prior sec-
tions, we ended up with 34 articles (see Table 2). To reduce
the chance of missing relevant works, we further scanned the
related work sections of these papers. In addition to broad-
ening our search, we checked other studies that had cited the
collected papers and reviewed them to determine whether
they were related to web API fuzzing. If affirmative, we
include them in our paper collection.

@ Springer

73

Page 6 of 28

I. P. A. Dharmaadi et al.

Table 2 Number of papers collected from some repositories after manual reduction (sections 3.2).

No Repository Query Additional filter Selected papers

1 ACM Digital Library AllField:(fuzzing) AND AllField:(web) AND Only "Research Article” 13
AllField:(REST) AND AllField:(API) AND
AllField:(security) AND
AllField:(vulnerability) AND AllField:(testing)

2 IEEE Explore ("Full Text & Metadata”:fuzzing) AND (”Full Only ”Conferences” and “Journals” & 15
Text & Metadata”:web) AND (”Full Text & Publication time: 2013-2023
Metadata:rest) AND (”Full Text &
Metadata’:api) AND ("Full Text &
Metadata’:security) AND ("Full Text &
Metadata’:vulnerability) AND (’Full Text &
Metadata’:testing)

3 Science Direct Terms: fuzzing and web and rest and api and Only "Research Articles” & Publication 2
security and vulnerability and testing time: 2013-2023

4 Wiley Anywhere: fuzzing and web and rest and api and ~ Only “journals” & Publication time: 1
security and vulnerability and testing 2013-2023

5 Web of Science (((((ALL=(fuzzing)) AND ALL=(web)) AND Only “journals” & Publication time: 1
ALL=(rest)) AND ALL=(api)) AND 2013-2023
ALL=(security)) AND ALL=(vulnerability))
AND ALL=(testing))

6 MIT Libraries Fuzzing and web and rest and api and security Only “journal articles” & Publication 0
and vulnerability and testing time: 2013-2023

7 Springer Fuzzing and web and rest and api and security Only “conference paper” or “article” & 2
and vulnerability and testing Publication time: 2013-2023

Total 34

Number of papers
14
12

10

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Fig. 2 Number of papers in our collection published over the last ten
years

3.4 Summary on publications

Finally, we obtained 47 articles, including 34 initially found
by search and 13 new ones by performing the collection
expansion step. The majority of them (64%) are conference
papers published in proceedings, while the rest are journal
articles (34%) and book chapters (2%). Designing a web API
fuzzing framework is a trending topic because more and more
papers are published over time (see Figure 2). Evidently, there
were only 3 papers in total in the initial four-year period, but
after that, the number of publications increased significantly.

@ Springer

4 Web API fuzzing overview

Web API fuzzing consists of two phrases: web API and
fuzzing, which the phrases have been explained in Sec-
tions 2.1 and 2.2, respectively. Based on the descriptions
in those sections, we conclude that web API fuzzing is an
automatic test through typical web interfaces with a large
amount of HTTP requests for finding web vulnerabilities.
Overall, web API fuzzing has distinctive characteristics of
its program under tests (PUTs) and uses either crash-driven
or vulnerability-driven methodology.

4.1 Program under test

Web API fuzzer aims at any web application (either inter-
preted or compiled) which requires input in the form of
an HTTP request. Even though web application is related
to the network protocol, web API fuzzer has several clear
differences from network protocol fuzzer because the char-
acteristics of the PUT differ.

4.1.1 Web API fuzzing vs network protocol fuzzing

Network protocol fuzzing targets applications implement-
ing certain network protocols (e.g., FTP) whereas web API
fuzzing aims at applications running on top of the network

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page70f28 73

protocols. Two popular examples of the network protocol
fuzzers are AFLNet [78] and ChatAFL [71]. Since the pro-
tocol applications are stateful, they enforce strict sequencing
that only processes correct inputs in the right order [71]. On
the other hand, because the web applications operate over the
protocol application, they require more: valid HTTP requests
to satisfy the web protocol, with certain parameter values and
body payload to satisfy web application logic [82]. Therefore,
the web API fuzzer has a more extensive scope than network
protocol fuzzing because it explores more vulnerable codes
while keeping the generated requests valid and complying
with the logic.

4.1.2 Web API fuzzing vs binary fuzzing

Due to the diverse execution environment, binary fuzzers—
actively developed by the security community—are typically
optimised for basic application interfaces, such as command-
line [103], which request one set of inputs. On the other hand,
web applications present a more complex attack surface,
characterized by many API endpoints with different input
structures for each endpoint. It makes the web API fuzzers
propose sophisticated strategies for prioritizing and sequenc-
ing endpoint execution, especially when considering API
dependency (explained in Section 5.1.1). In addition, web
API fuzzers have to deal with more complex interfaces (i.e.,
dynamic web pages) or OpenAPI specifications to effectively
retrieve available endpoints and validate input constraints.
In a nutshell, web API fuzzers incorporate more specialised
components than those in the binary fuzzers.

4.2 Methodology

Based on the approach to finding vulnerabilities, existing
works on web API fuzzing are classified into crash-driven and
vulnerability-driven fuzzing. While the former is intended to
test all WUT codes to find web crashes, the latter is supposed
to test certain code regions with pre-defined rules to examine
specific vulnerabilities the user is looking for.

4.2.1 Crash-driven fuzzing

The crash-driven fuzzer focuses on producing plenty of test
cases leading to the WUT crashes, and then, based on the logs
of raised errors, the tester analyses the vulnerabilities, errors,
or bugs behind the crash. Its main objective is to reach and
test all statements and possible states in the web application.
For those reasons, this fuzzing has a high chance of finding
the 0-day vulnerabilities. Some examples of existing works
that design crash-driven web API fuzzers are Restler [12]
and MINER [62].

4.2.2 Vulnerability-driven fuzzing

Unlike the first group, which focused on testing the entire
code, this group may only look for certain code regions con-
taining desired vulnerabilities. Because its work is designed
to focus on specific vulnerabilities, this group is called
vulnerability-driven fuzzing. The web API fuzzing frame-
works that belong to the vulnerability-driven fuzzing are
already supplied with custom mutators and vulnerability
checkers to achieve their targets. The fuzzing framework uses
particular mutators to produce input satisfying the require-
ment for triggering the vulnerabilities in the code. Then, it
checks for the symptoms of vulnerability using the custom
checkers. Some examples of existing web API fuzzers work-
ing in this category are Cefuzz [102] and Zokfuzz [95].

5 Web API fuzzer workflow

To identify security vulnerabilities and bugs in web applica-
tions, web API fuzzers produce valid HTTP requests first,
then systematically craft the requests with varying parame-
ters, headers, payloads, and structures, and monitor the web
responses throughout the process. Since most of the fuzzers
we reviewed deal with web services which provide Ope-
nAPI specifications, the fuzzers are supplied with modules
to analyze the structure of web API to obtain valid request
formats. Therefore, in general, web API fuzzers involve four
crucial processes: producing HTTP request templates, ren-
dering them to produce concrete HTTP requests, executing
them and getting feedback from WUT (Web Under Test), and
mutating the requests to trigger vulnerabilities (illustrated in
Figure 3). We then classify the problems and solutions devel-
oped by existing studies into these processes and finally result
in the problem-solution taxonomy (see Figure 4).

5.1 Request template generation

RQ1: To explore attack surface, what techniques are used
to generate HTTP request templates?

To effectively explore the attack surface of WUTs, web
API fuzzers must produce valid HTTP requests with maxi-
mum code execution coverage. Achieving this requires both
crash-driven and vulnerability-driven web API fuzzers to
generate valid request templates first.

HTTP request template generation is the process of
analysing given information to produce diverse request
templates, which is essential in assembling long request
sequences to reach deeper WUT statements and explore
more security-related bugs. This process can also be called
grammar generation because it constructs the grammar sets
that define the structure and format of the input data. Since

@ Springer

73 Page 8 of 28

I. P. A. Dharmaadi et al.

Grammar-based
process

Mutation-based
process

Feedback

Mutated

: Concrete HTTP requests : :
: : ‘HTTP requests
: 1

Vulnerabilities

Mutation

Template : }
rendering :

Request templates Report

Producing request
templates

Fig. 3 General overview of web API fuzzer. The first two steps in the
left (explained in Section 5.1 and 5.2) are classified as grammar-based
processes, while the next steps in the right (explained in Section 5.3 and
5.4) are mutation-based process

Request dependency

o Graph-based
o Tree-based
o Pre-defined template
Short request sequence . ﬁpznApl Znnotation
« No dependenc
¢ P! y
« Length-oriented selection X
o Smart sampling
— Templa.te e
— Generation
Lack of OpenAPI spec
. HTMLcrawler ¢
o Javascript crawler v
o Capturing user actions Specific type inference
o Format-encoded type
inference
Initial valid values
o Default dictionary D
« Example values
Templ Rendering <«
! |
Semantic values Inter-parameter
dependency
« DBPedia
« Grouping similar « Dependency inference
parameters o Inter-parameter
dependency
« Request validity
prediction

creating templates is challenging considering the limited
information that can be used as a reference, several stud-
ies have identified certain problems related to this issue and
proposed some solutions as follows.

5.1.1 Problem: request dependency

Most existing works raise a request dependency problem
because it is unclear how to create correctly sequenced HTTP
requests. Basically, the frameworks use the Open API spec-
ification as the guidance to produce valid HTTP requests.
However, the document does not provide clear information
regarding the order in which the HTTP requests are made
—for example, which requests must be called first and which
can be called later. When the request sequence is chaotic,
the web server likely cannot process most requests because
certain web states or conditions have not been met to exe-
cute the commands on those requests, which ultimately drops
the fuzzer probability of uncovering web vulnerabilities. For

Feedback for mutation

HTTP response
Code coverage
Branch distance
Taint feedback
Test coverage level

Y

Instrumentation

Execution and <
Feedback

Source code augmentation
o Interpreter augmentation

Observed vulnerability

o Crash-forming
« Non-crash-forming:

o Security-related
rules
Robustness
XSS
SQL injection
Command injection
DoS

Y

o o0 0o

Fast mutation

?| « Randomly modified value

Code region exploration

N Mutati

Y

+ Response dictionary

o Corpus mutation

»L « Adaptive hypermutation
More malicious requests « Attention-based models

Constraint violation
Rule-based schema
mutator

Vulnerability dictionary
Tracked fault generator

Fig.4 Taxonomy of the problems and solutions from prior web API fuzzing studies described in Section 5. The grey boxes are the web API fuzzer
processes explained from Sections 5.1 until 5.4. Each process has different problems along with their respective solutions (drawn in white boxes)

@ Springer

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page9of28 73

/POST\ N ﬁos> N _fGET\
%Q@}—bmk;ld \f‘book/\'_kaud @J

Fig. 5 An example of the dependency graph model. The get category
API will produce a cat ID that will be needed for calling the post book
API. The latter will generate a book ID used by the delete book API

instance, the web server cannot execute a delete request if
the resource to be deleted does not exist. Therefore, some
studies developed diverse ways to solve this problem.
Graph-based dependency Some researchers have developed
a dependency graph to construct the relationship among
HTTP requests. This graph provides clear guidance to find
which requests must be committed before calling a spe-
cific request. The researchers proposed various techniques
to build this graph, especially in deducing the request depen-
dency. Atlidakis et al. [12] infer the request dependencies
by using the request types declared in the specification.
RESTler, the framework they built, analyses the specifica-
tion to determine which resources in one response become
requirements in another request (see Figure 5). For exam-
ple, calling a new item request will produce an item id in
the response, which this id field has to be inserted when call-
ing an update item request. Then, it can be concluded that the
update item request requires calling the new item request first
because of the id field. Corradini et al. [20], other researchers
who adopted the RESTler method, explained that identify-
ing those dependency fields might be tricky because the field
names in different operations are sometimes written differ-
ently, yet they are the same semantically. Therefore, those
researchers use several strategies to match the field names,
namely case sensitivity, ID completion, and stemming. More-
over, they utilise the CRUD semantics to determine the
request order. For instance, the POST requests have to be
called first before the GET or DELETE requests. Another
researcher, Yamamoto [90], designed a bipartite graph to ease
the request dependency inference. The graph describes the
relation between APIs and named values that appear in both
request and response parameters.

Tree-based dependency Lin et al. [59] found the classic
dependency graph is inefficient because of the dependency
explosion among APIs. This explosion led to too many pos-
sible paths that will overwhelm the fuzzing when traversing a
complex graph model to explore APIs. As aresult, they devel-
oped a tree-based dependency that is much simpler because
the fuzzing frameworks only need to traverse a tree (which
is linear complexity) instead of traversing a graph (which is
quadratic complexity). This dependency is inspired by the
fact that web users generally execute the parent node before
calling its child nodes. A valid URL comprises several com-
ponents separated by the slash (/) character. Nodes represent
these components, and an edge between two nodes appears

GET
category

Fig. 6 An example of the tree model proposed by Lin et al. [59]. The
tree describes valid endpoints that can be accessed: the web API root
(/), /book, /book/delete, /category, and /category/new with some HTTP
methods

if a valid URL contains those components. Illustrated in Fig-
ure 6, the tree model depicts the relationship between a root
URL and its child URLs in which a node can contain one or
more HTTP methods. Traversing this model via a depth-first
or bread-first order can be more straightforward. In addition,
Wu et al. [89] use such hierarchical relations of resources
that can be depicted in a tree structure to generate request
sequences. Specifically, they proposed a constraint handler
based on the hierarchical relations of resources and CRUD
semantics to construct the template dynamically. The han-
dler checks if each request in a template does not access a
resource before its creation or after its deletion. For instance,
the handler rejects the construction of a sequence consisting
of GET /book/id and POST /book because it accesses the
bookID before being created by the POST method.
Pre-defined template The pre-defined template is a list or
table containing the HTTP request order of an API. Tsai et
al. [84] prefer to use manual input combined with depth-first
search to solve the API dependency and create the template.
On the other hand, Zhang et al. [100] proposed two templates:
an independent template as an action that does not affect
follow-up actions on any resource and a non-independent
template as an action whose effects cannot be predetermined
(see Table 3). Then, they also designed a smart sampling
method (explained in Section 5.1.2) to construct a request
sequence based on both templates.

OpenAPI annotation Instead of generating graph or tree-
based dependency, a fuzzing framework can put the infor-
mation, i.e., annotate the OpenAPI specification, to add more
comprehensive information. Deng et al. [24] use this idea to
propose a set of customised annotations for OpenAPI Spec-
ification to help fuzzing generate desired request sequences.
They introduced several types of annotations. For example,
dep-operation expresses the dependent operations that
must be performed before a certain operation. Since the anno-
tations are human-readable and automatically processable,
they can be performed by both human experts and fuzzing
modules. Fuzzing modules infer the dependency based on the

@ Springer

73 Page 100f 28

.P. A. Dharmaadi et al.

Table 3 Some examples of the

template model proposed by Description Independent? Template
Zhang et al. [100] To retrieve a resource YES GET
To create a resource NO POST
3 To create an existing resource NO POST-POST

response fields of a certain operation that are used in other
requests.

No dependency Some web API fuzzing frameworks do not
describe any specific model to infer valid consecutive API
requests because the frameworks only construct one HTTP
request for each test case. Some examples of existing works
implementing this approach are the works of Van Rooij et
al. [80], and Trickel et al. [82]. They did it because they
mainly focused on enabling binary fuzzing tools or methods
in web applications where the original tools in the binary
applications do not require input sequences.

5.1.2 Problem: short request sequence

Another problem mentioned by existing studies is the short
request sequences. Since existing web API fuzzers tend to
produce such sequences, Lyu et al. [62] stated that a long
request sequence is essential to reach deeper states and vul-
nerable codes in web applications because it can cover many
possible request combinations. One of these combinations
may be valid for exploring vulnerable codes in hard-to-reach
states. The authors also conducted a preliminary experiment
showing more than 75% of the issues in the GitLab ser-
vices -the WUT- can only be reached using a long request
sequence. Specifically, the authors took at least 3 HTTP
requests in a sequence to reproduce those issues. Therefore,
producing long request sequences can enable better testing
coverage. Several methods can be used to produce longer
request sequences, summarised below.

Length-oriented selection Lyu et al. [62] developed the
length-oriented sequence construction module to construct
candidate sequence templates. Initially, they employ the
graph-based dependency as in the RESTler [12] to produce
initial sequence templates. Then, because the module uses
a custom probability function, longer templates will have a
higher chance of being chosen for the next stage: the exten-
sion process. This process puts a new request at the end
of each chosen template. The newly generated templates
will be retained if they bring valid responses. Therefore,
each fuzzing iteration will produce longer and longer request
sequences.

Smart sampling Arcuri [7] proposed a smart sampling tech-
nique and pre-defined templates (explained in the prior
section, see Table 3) to construct an individual test case

@ Springer

containing some consecutive HTTP requests. The sampling
involves four methods that can be chosen, namely by sam-
pling: a resource with an independent template, a resource
with a non-independent template, two resources, and more
than two resources in which the last two only allow the last
resource with non-parameter GET. Using this sampling tech-
nique will help fuzzing produce longer and longer sequences
because other requests will be added before the existing
request. The added requests placed in front are expected to
put the WUT into the correct state for executing the existing
request.

5.1.3 Problem: lack of OpenAPI specification

Most web API fuzzing frameworks use OpenAPI spec-
ification documents to retrieve API formats in the web
application. Many web applications do not have OpenAPI
specifications, but the web fuzzers can rope with this by
crawling and parsing the web client pages or employing a
human.

HTML crawler Duchene et al. [28] proposed a state-aware
crawler to parse the HTML documents and learn the control
flow of the web application. The crawling process results in
a control flow model (CFM) representing web pages (node)
and requests (transition), and then the results are used by the
KameleonFuzz [27], the authors’ fuzzing framework. Van
Rooij et al. [80] developed a similar HTML crawler to scan
links from anchor and form elements in each HTML docu-
ment reached using the htmi51ib library. This similar crawler
workflow was also used by Witcher, a web fuzzer devel-
oped by Trickel et al. [82]. Given an entry point URL by the
user, the Witcher’s crawler works by scanning the HTML
document responded to by the web server to find links and
relevant fields that can establish HTTP requests, like form,
input, select, and textarea elements.

Javascript crawler Javascript documents can be an alter-
native to crawl web URLs compared to HTML-formed
responses since modern web applications often put their
URLs to the web server in JavaScript documents. As an
alternative to parsing the HTML documents, Gauthier et
al. [33] developed BackREST using a client-side javascript
document to obtain a REST API inference model. They
demonstrated one example: the web API entry points in a
javascript document used in the Node.js Express application

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page110f28 73

are similar to those in the Open-API Specification. Since
these documents reveal similar information, BackREST
introduced a state-aware crawler to analyse the javascript
code that calls web APIs. The crawling process yields valid
HTTP requests, and the requests executed by the browser
are intercepted by the Man-In-The-Middle (MITM) proxy to
build an API inference model. This similar approach was also
adopted by Yandrapally et al. [91], who designed an API test
carving to produce an API-level test suite and a test execution
report and OpenAPI specification. Their work is intended for
all web applications, irrespective of the web frameworks they
use.

Capturing user actions Instead of employing crawlers to
obtain valid APIs, Fung et al. [31] utilise a human to interact
with the WUT in the browser as usual. They built a browser
add-on to capture the user actions, and the add-on can track
the parameter dependency from the submission requests and
the server responses. Finally, the capturing phase will pro-
duce valid request templates that can be mutated later.

5.1.4 Problem: specific type inference

The previous works on web API fuzzing have not addressed
the root cause of request candidate space explosion, which
is the limited data types available to represent API param-
eters. For example, a study by Lei et al. [53] showed that
most web APIs use string-typed parameters, and the string
type has a huge space to be explored. Generating effective
string values that can pass parameter validation, reach busi-
ness logic, and trigger security-related bugs is challenging
because there is little information to narrow down the input
space of the parameter. Therefore, to address this issue, recent
work focused on inferring the information about the data
types, as discussed below.

Format-encoded Type (FET) inference Lei et al. [53] pro-
posed a FET inference technique to provide a fine-grained
description method for parameters that utilises data type and
value format. FET can be defined as new data types that
are more specific than the conventional types the software
developers are using in programming (e.g., string or integer).
To construct the FET lattice, the authors referred to popular
RESTHful services (a total of 1268 APIs). They resulted in
21 ubiquitous FETs organised in 5 levels. All API parameter
values are classified into those FETs to enable the applica-
tion of different mutation strategies. For example, the FET of
datetime (value example: ”2019-2-29”) has a different treat-
ment from the FET of hash (value example: ”19CGHEE2”)
even though both are string-typed. Fuzzing will apply a strat-
egy to make year overflows in the datetime parameter and to
use a non-hexadecimal-number string in the hash parameter.

Answer to RQ1: To generate HTTP request templates
for attack surface exploration, the most prominent solu-
tions are: 1) creating request dependency (either graph-
based or tree-based) inferred from OpenAPI specifica-
tion, and 2) using pre-defined templates. The others are
OpenAPI annotation, length-oriented selection, smart sam-
pling, HTML/JS crawlers, capturing user actions, and
format-encoded type inference.

5.2 Template rendering

‘ RQ2: How are the request templates rendered?

After generating request template sequences from the
prior step, existing web API fuzzers commonly continue to
concretise the sequences to make the valid sequences reach
deep vulnerable codes in WUTSs. This process is known
as template rendering, which takes generic input tem-
plates and populates them with concrete values to create real
requests that can be sent to the WUT (see Figure 7). These two
initial processes (request template generation and template
rendering) can also be called grammar-based input gen-
eration because the input templates define the structure and
format of the input data, and fuzzer will fill in the placeholders
in the templates. The processes allow the fuzzing framework
to generate valid inputs that conform to the expected format
of the WUT. Several problems arise in this stage, as follows.

5.2.1 Problem: initial valid values

Fuzzer will miss opportunities to test deeper web function-
alities and reach vulnerable statements if it produces initial
HTTP requests that do not comply with the WUT’s require-
ments. The WUT will reject those malformed requests, and
then the mutation process struggles to modify them to be
valid. In the end, no matter how long the fuzzing process
operates, it is very likely that fuzzing will fail to explore
interesting features in the WUT. Therefore, initial valid val-
ues serve as a good starting point for the fuzzing campaign.
However, some studies mentioned the complexity of finding
valid values because the OpenAPI specification rarely pro-
vides valid examples of each API field. This situation made
the researchers design a default dictionary in the template
rendering process.

Default dictionary and example values (DD) Basically, all
existing web API fuzzing frameworks prepare default values
for each data type to concretise the request templates. Atli-
dakis et al. [12] use a user-configurable value dictionary to
fill the request templates based on the field types. For exam-
ple, they set values 0, 1, and -10 for fields requesting integer
values and "sampleString" for fields requesting string values.
Other examples are Godefroid et al. [38] and Lyu et al. [62],

@ Springer

73 Page 120f28

I.P.A.

Dharmaadi et al.

HTTP Request Template

OpenAPI O\Jo
Document J—\DID\nfe(ence ﬁ.{l > Tempaiie >
- Process generation

Graph/Tree
HTML Document dependency
- Pre-defined

JavaScript Crawler template
Document | i

POST /api
Host: exan

Template
rendering

POST /api/dat

Host: example
~

[Dictionary|

Fig.7 Illustration of generating concrete request sequences described in sections 5.1 and 5.2

which defined various valid value options for each data type.
Besides using this technique, other researchers also found
that some OpenAPI specifications may provide the example
fields that hold concrete example values documented by the
web developers. Therefore, apart from using their default val-
ues, some researchers, such as Corradini et al. [20] and Deng
et al. [24], utilise the example field to fill the initial values of
HTTP request templates.

5.2.2 Problem: semantic value

Some studies highlight the issue of semantic value, where
fuzzers should generate inputs that are not only syntactically
correct but also semantically meaningful in the beginning.
This challenge arises because human testers usually pro-
vide inputs that are both valid and contextually appropriate
for each API parameter [2], thereby increasing the likeli-
hood of reaching unsafe codes within the application. In
real-world API applications, providing only syntactically
valid but semantically invalid inputs will bring unsatisfactory
results. For example, the search operation in the YouTube
API application demands the user to fill in semantically valid
values for every search field. If not fulfilled, the application
will not show a result because it does not match with any
data. This means the user cannot thoroughly test the search
feature without the semantically valid values. In addition,
producing semantically valid inputs is challenging because
no semantic information can be derived from the OpenAPI
specification. Therefore, some studies proposed a strategy to
address this issue as follows.

DBPedia Previous works used external knowledge dictionar-
ies to help fuzzing. Alonso et al. [1] [2] leverage semantic
knowledge discovery to generate realistic test inputs. They
used DBPedia [14], aknowledge base, because they had iden-
tified its potential, but no one had implemented it in the web
testing domain. However, employing this dictionary is not
straightforward because of its diverse domains. For exam-

@ Springer

ple, when fuzzing demands the concrete value for a title
field, the DBPedia will return hundreds or even thousands of
diverse title-type inputs (e.g., movies, games, or books) [2].
The authors managed to narrow down the results by inserting
more specific criteria derived from HTTP parameter combi-
nations. For instance, adding the publisher-name field in the
search queries with makes the results more specific to book
title values.

Grouping similar parameters Liu et al. [60] group the string
parameters with the same semantic meaning to generate
semantically correct results. For example, loginid, username,
and account have a similar semantic meaning that demands
the user to provide a name. Therefore, the grouping mod-
ule will utilise certain modules to produce correct names.
Another example is the group of the description, message,
and comment field that requires the user to give a description
text.

5.2.3 Problem: inter-parameter dependency

Inter-parameter dependency means that one or several param-
eter values depend on other parameters. For example, the
Youtube API documentation states that the fype parameter
must be filled with video before setting up the videoDef-
inition value [65]. Therefore, if the type parameter is not
filled in, the web server will not process the value of the
videoDefinition parameter, making critical paths within the
application remain unexplored. Another example is that a
parameter representing the marital status of an individual
must have the value of married before filling in the spouse-
name field. Martin-Lopez et al. [65] raised this issue because
OpenAPI specification does not inform this dependency
explicitly. Their study revealed that around 85% of APIs from
40 real-world applications (containing more than 2.5K APIs)
have such parameter dependency rule. Without satisfying the
rule, a fuzzing campaign cannot go further to test the corre-

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page130f28 73

sponding functions. To overcome this problem, some studies
proposed solutions as follows.

Dependency inference Wu et al. [89] employ a Natural
Language Processing (NLP) method to infer the parameter
dependency constraints that are usually written informally
in the description field of the Open-API Specification doc-
uments. They leverage spaCy>, an open-source library, to
perform this task. Before a fuzzing campaign begins, they
prepare some patterns to look for, such as if PARAM_A is
VALUE_B, PARAM_C is required. Then, using the pattern-
based matching engine, the library will check if any text in
the Open-API Specification documents matches those pat-
terns. Adopting a similar idea, Kim et al. [47] designed
an NLP-based rule extraction to infer the rule and inter-
parameter dependencies from the description fields. The
extraction process involves vocabulary term identification,
value and parameter name detection, and rule generation.
Finally, the process produces OpenAPI-compliant rules that
are machine-readable.

Inter-parameter Dependency Language (IDL) Martin-Lopez
et al. [70] presented a domain-specific language called IDL
(Inter-parameter Dependency Language) to express seven
types of inter-parameter dependencies: Requires, Or, Only-
One, AllOrNone, ZeroOrOne, Arithmetic/Relational, and
Complex. In this language, those dependencies are expressed
using invariants, conditional definitions, logical operators,
and relational operators. However, this study still uses man-
ual work to create the corresponding IDL from the API
documentation. Apart from IDL, the study also proposed an
automated analysis tool to check whether a request meets
all the dependency constraints. Ultimately, the tool and IDL
can automatically generate concrete requests satisfying the
inter-parameter dependencies [67].

Request validity prediction Mirabella et al. [73] employ a
deep learning model to predict if a certain HTTP request
is valid that satisfies all the input constraints, including the
inter-parameter dependencies. The training data is a dataset
of API calls with valid or invalid labels. The learning model
consists of the input layer that fits the data frame numbers,
five inner layers (32, 16, 8, 4, and 2 neurons, respectively),
and the output layer (one neuron). If the output layer produces
a value greater than 0.5, the input is valid; otherwise, it is
faulty.

Answer to RQ2: To render the request templates, the most
prominent solutions are using default dictionary and exam-
ple values. The others are initial valid values, semantic
values, inter-parameter dependency, DBPedia, grouping
similar parameters, dependency inference method, inter-
parameter dependency language, and request validity pre-
diction.

3 https://spacy.io/

5.3 Execution and getting feedback

Fuzzer sends all HTTP requests produced by the prior steps
to the WUT and then receives the reply. Based on the reply,
the fuzzer will decide which requests or sequences must be
explored and what mutation strategies must be applied to
reach problematic codes and trigger any vulnerabilities in
such codes. In this stage, the fuzzing researchers mention
several problems related to reply messages, as follows.

5.3.1 Problem: feedback for mutation

RQ3: What types of security-relevant feedback are col-
lected from the WUT?

Feedback from the WUT is crucial for the mutation process
because it helps comprehend the impact of the generated
requests. If supplied with helpful feedback, fuzzer perfor-
mance will be better because it can neglect the ineffective
requests to exploit the effective ones to trigger security vul-
nerabilities. In addition, particular feedback helps fuzzer to
identify areas of the code that have not been tested and gen-
erate inputs specifically to explore those regions. This can
increase the likelihood of finding hidden vulnerabilities. Prior
web API fuzzing studies observed the following feedback
information.

HTTP response HTTP response is the standard information
a web application provides after executing an HTTP request.
Since it is common feedback, all web API fuzzers utilise this
information to deduce whether specific vulnerabilities have
been successfully triggered. In particular, all crash-driven
fuzzers focus on the 500-status code, which indicates a server
crash or failure, as a main signal of application instability
following malicious inputs. In addition, a 200-status code,
which represents a successful response, can guide the fuzzer
deeper into the execution path of WUTs for further explo-
ration of potential vulnerabilities in more complex or hidden
functionality. For example, a fuzzing framework built by Lyu
et al. [62], MINER, re-uses request sequences that bring
valid HTTP response codes to produce longer sequences.
Similarly, Wu et al. [89] developed a fuzzer called RestCT
that obtains successful requests to utilise several constrained
covering arrays for generating next-round requests. Then, a
fuzzing framework called ResTestGen built by Corradini et
al. [19] collects requests with successful status codes to be
used to create new test cases.

Code coverage Code coverage is how much code in a WUT
is executed when it receives inputs. This feedback is cru-
cial for fuzzers to monitor which portions of the code may
remain unexecuted due to the presence of complex branching
conditions. Maximizing code coverage is essential because it
increases the likelihood of exposing vulnerabilities by reach-
ing and executing all faulty codes. Given code coverage is

@ Springer

https://spacy.io/

73 Page 14 0f 28

I. P. A. Dharmaadi et al.

not standard feedback in web applications, it can only be
enabled by implementing instrumentation, which will be pro-
vided in Section 5.3.2. Prior works employed code coverage
to enhance web API fuzzing frameworks. Van Rooij et al.
[80] use coverage score and other metrics to rank requests.
The AFL algorithm [52] highly inspired their work to keep
a new high-score request for future mutation. The algorithm
also imbues Trickel et al. [82] to develop a web API fuzzer
called Witcher. This work augmented the web interpreter to
produce code coverage so that the Witcher could store and
mutate the request that brought a new execution path.
Branch distance Some vulnerable codes may exist behind a
hard-to-solve branch condition, making a fuzzer hard to gen-
erate an HTTP request to satisfy the condition. To get more
precise information on which conditions need to be solved
to go deeper, Arcuri [5] calculates a branch distance, which
is how close a particular input is to solving the constraints
[49]. For example, the conditional branch of if (a==20) is
reached by an HTTP request with parameter a=15. There-
fore, the branch distance of the request is 5. To be able to
calculate the distance, custom instrumentation is needed.
In some cases, satisfying the conditional branches may be
complicated because the involved variables are not user-
controlled data that are not required in the HTTP request.
Instead, those are influenced by other functions. Therefore,
the fuzzing framework proposed by Arcuri [5] tends to pick
requests with low branch distances for the mutation stage
because those are relatively close to solving the branch.
Taint feedback Taint analysis and tracking are important tech-
niques in fuzzing because they provide information about
how data flows through a program, highlighting the influence
of external input on the program’s state [83]. Taint feedback,
the result from the taint analysis, helps to understand the input
data propagation through the program. Marking certain input
data as tainted can trace the input flow and identify poten-
tial security-sensitive operations that involve user-controlled
data. Using this approach, the fuzzing framework can focus
on generating inputs specifically targeting the paths and oper-
ations influenced by HTTP requests to increase the chances
of discovering vulnerabilities. Gauthier et al. [33] proposed a
taint-driven fuzzing containing taint analysis that is executed
in the initial stage before starting the fuzzing campaign. Dur-
ing the campaign, the analysis will result in taint feedback
on which requests reach security-sensitive program locations
that are already defined. Arcuri et al. [9] use the taint analysis
to track variables at runtime for seeding strategies.

Test Coverage Level (TCL) Developed by Martin-Lopes et al.
[69], TCL assesses the coverage of the request collections.
It roughly measures the extent to which the WUT’s code
has been exercised by the generated test inputs using the
black-box approach. It uses input and output criteria (e.g.,
paths, operations, and content type) that can be observed
without having the source code. TCLO represents the weak-

@ Springer

est coverage level, and the strongest one is TCL7. Each TCL
level has different criteria that the requests must satisfy. To
reach a certain TCL, the request collection must meet all
requirements belonging to the previous levels. Tsai et al. [84]
developed a fuzzing framework called HsuanFuzz employing
this TCL concept. If request collection can increase the TCL
of a certain API path, it will be stored in the fuzzing corpus.
Answer to RQ3: The security-relevant feedback that is
most often extracted from the WUT is the HTTP response
code. The others are code coverage, branch distance, taint
feedback, and TCL.

5.3.2 Problem: instrumentation

RQ4: How are WUTs instrumented to capture security-
critical behaviours and responses?

Code instrumentation means an instrumentation tool will put
some probes in the WUT’s source code to collect software
internal states (e.g., how much code the WUT reaches during
the execution) [44]. The instrumentation can be done either
in a static or dynamic way, in which the former means it is
performed at compilation time and has less run-time over-
head; meanwhile, the latter is done at run-time and has better
performance [63]. Since the instrumentation enables detailed
tracking of code execution, it empowers fuzzers to system-
atically explore HTTP requests that reach more vulnerable
codes and deeper statements. Even though the instrumenta-
tion is helpful for fuzzers, it is only employed by a few prior
fuzzing frameworks because its implementation is challeng-
ing.

Source code augmentation Putting probes in the source code
or byte code level is the common way to instrument appli-
cations, in which around 32% of prior studies adopt this
technique. EvoMaster [5] developed new instrumentation
tools to get code coverage from various WUT platforms.
First, for Java-based WUT, Arcuri et al. [6] instantiate a
Java agent to intercept all class loadings and add probes in
the bytecode. On the other hand, for Javascript-based WUT,
Zhangetal. [99] develop a plugin for Babel (a JavaScript tran-
spiler) to create an instrumented version of the WUT which
contains probes in the source code. Rather than employing
ready-to-use third-party libraries (e.g., JaCoCo), designing
these custom tools enables EvoMaster to add extra features
(e.g., calculating the branch distance) for the mutation feed-
back. Figure 8 illustrates the instrumented version of the
code.

Van Rooij et al. [80] created an instrumentation method to
getlive information from PHP-based WUT. Itinstruments the
application in the AST (Abstract Syntax Tree) to catch basic
block or branch coverage. AST is a tree structure representing
source code syntax without showing the details that can be
used to identify statements or declarations in the program

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page150f28 73

let x = 0;

(a) Original code

const __EM__ = require("evomaster-client-js")

.InjectedFunctions;
EM__.registerTargets (["File_test.ts","

Line_test.ts_00001","Statement_test.
ts_00001_0"1);
EM__.enteringStatement ("test.ts",1,0);

let x = 0;
__EM__.completedStatement ("test.ts",1,0);

(b) Instrumented version

Fig.8 Anexample of the instrumentation process taken from the paper
of Zhang et al. [99], in which 8a is the original code written in typescript
and 8b is the instrumented version

[96]. Using this approach, this instrumentation method parses
each file using the PHP-Parser library and identifies basic
blocks during the AST traversal process. Then, it puts probes
at the beginning of a basic block, such as the first statement
in a function definition or a control function.

Interpreter augmentation Instead of augmenting the source
code as explained above, Trickel et al. [82] prefer to aug-
ment the interpreter application. In the context of web
applications, an interpreter is a component running in the
web server (recall Figure 1) that reads the source codes
of the server-side web application and translates them into
byte-code instructions without the need for a separate com-
pilation step. Their work augmented the interpreter by
modifying and recompiling its source codes. The augmented
interpreter will then call the proposed library function,
Witcher’s Coverage Accountant, to send the line number,
opcode, and parameter of the current byte-code instruc-
tion during the WUT execution. The Accountant function
aims to measure the test coverage from the sent data.
Answer to RQ4: Some existing web API fuzzer studies
(32%) use source code or interpreter augmentation (2%)
for the instrumentation. The others (66%) do not instrument
the WUT because they use the black-box testing approach.

5.3.3 Problem: observed vulnerability

‘ RQS: What vulnerabilities are observed?

WUT generally exposes its vulnerabilities when receiving a
request raising inevitable errors. Determining vulnerabilities
to look for is a crucial issue because it highly influences the
fuzzer design. Basically, the vulnerabilities observed by the
existing web API fuzzers can be grouped into two big cate-
gories: crash-forming and non-crash-forming vulnerabilities.
Crash-forming vulnerabilities Crash-driven fuzzers generate
inputs to make software crash and look for any vulnerability
behind the crash. The vulnerabilities found in this way can

be called crash-forming vulnerabilities. Most of the existing
web API fuzzers (74% of existing papers) report the WUT
crash (i.e., internal server error) by using HTTP status codes.
For example, EvoMaster [5], RESTler [12], RestTestGen
[85], RESTest [68], foREST [59], and RestCT [89], utilise
this technique to know the success of the injected inputs
by noting how many HTTP requests triggered 500-response
codes. Then, the fuzzer users must check internal error infor-
mation (e.g., full stack traces of thrown exceptions) to know
what actual error is raised. However, to detect more vul-
nerabilities, the users cannot rely solely on this information
because most web vulnerabilities do not manifest themselves
as error status codes. Another issue with relying solely on
error codes is a Sxx-response code does not always mean a
software fault if the web API is connected to external ser-
vices [64]. For example, a fuzzer sends a request to the first
web service that relies on the second service. If the second is
down, the first will return a Sxx-response code even though
the first service runs normally without error.
Non-crash-forming vulnerabilities

In addition to the crash, to ensure malicious parties can-
not exploit the WUT, some web API fuzzers catch specific
vulnerabilities that do not form a crash. To detect these
vulnerabilities, web fuzzers must be equipped with typical
bug catchers, as follows. To improve the RESTler capabil-
ities [12] for capturing specific bugs (resource violation),
Atlidakis et al. [11] designed four security rules, namely
the use-after-free rule, resource-leak rule, resource-hierarchy
rule, and user-namespace rule. These rules are checked after
getting the web responses. Take the second rule as an exam-
ple. If a child resource of a parent resource can be accessed
from another parent resource, it means the response breaks
the resource-leak rule and is classified as a bug. Corradini et
al. [19] improved the RestTestGen’s capability [85] in catch-
ing mass assignment vulnerabilities that can happen when
external users can manipulate the value of a resource meant
to be read-only by exploiting a misconfiguration of the auto-
matic parameter binding. The authors proposed observing
the WUT by checking whether the read-only attributes can
be overwritten and whether they differ from their default val-
ues.

Another web fuzzer, BackREST, was designed to catch
web vulnerabilities like XSS, SQL injection, Command
injection, and Denial of Service (DoS). It also enhanced
its work with taint feedback to detect more SQL and Com-
mand injection vulnerabilities. Van Rooij et al. [80] designed
a fuzzer to catch stored and reflective XSS vulnerabil-
ities. Initially, their fuzzer injects XSS payloads in the
HTTP request parameters, which will then call the alert
function. Parsing Javascript code in the HTML responses
using esprima® library, WebFuzz —their fuzzer’s name—

6 https://github.com/Kronuz/esprima-python

@ Springer

https://github.com/Kronuz/esprima-python

73 Page 16 of 28

I. P. A. Dharmaadi et al.

will check the corresponding alert function call. If affir-
mative of containing the alert, it can be concluded that
the web application is vulnerable to XSS. In addition to
WebFuzz, other web fuzzers used a similar approach to
detect XSS bugs, such as State-Aware Vulnerability Scanner
[26], KameleonFuzz [28], Cefuzz [102], and ZokFuzz [95].

Answer to RQS: Most web API fuzzer studies (74%)
observe crash-forming vulnerabilities using the 500-
response code. The others look for specific web vulner-
abilities, namely the violation of certain security-related
rules, XSS, SQL injection, and command injection.

5.4 Mutation

RQ6: How are the existing input spaces expanded to
uncover deeper or previously unseen security vulnerabil-
ities?

The mutation process is the core of the fuzzing method
because it gradually expands the existing input to uncover
deeper vulnerabilities and find more relevant input space.
Running a fuzzer for a long time will allow the mutator —the
fuzzing’s component doing the mutation process— to gen-
erate more inputs to explore execution paths that contain
uncovered vulnerable code. However, suppose the mutator
is poorly designed and does not suit the characteristics of
the targeted application. In that case, no matter how long the
fuzzing continues, its effectiveness will remain low (e.g., no
bugs will be found or code coverage will be flat). The fol-
lowing are several problems related to mutator design and
solutions provided by previous works.

5.4.1 Problem: fast mutation

Before advanced techniques appeared, a fuzzer made simple
modifications to existing input values to have a fast mutation
process. The modifications, such as random bit flipping or
byte deletion, can gradually discover unexpected behaviour
in PUTs. However, they are not enough in the web applica-
tion context because they are commonly intended for finding
memory-related vulnerabilities in binary applications. There-
fore, existing web API fuzzing proposals devise another way
to do fast mutation to make the mutation process more suit-
able for web domains, as follows.

Randomly modified values (RMV) Creating random data may
be the most straightforward technique for mutation in all
fuzzing types, including web API fuzzing. However, web
API fuzzer rarely applies mutation at the bit level. The work
of Lei et al. [53] showed that most RESTful web applications
use around 67% string-typed and 32% number-typed param-
eters. Therefore, all web API fuzzers create new mutated
HTTP requests using string modification (e.g., duplicate ran-

@ Springer

dom string or swap string position) or number operation
techniques (e.g., multiplication) to fill the parameter values.
These techniques can trigger web crashes since some WUTs
are not capable of handling unexpected strings (recall Sec-
tion 5.3.3).

5.4.2 Problem: code region exploration

Since the random value modification can result in either valid
or invalid values, the fuzzing framework should be careful
when using that technique. Aggressively using arandom gen-
erator may damage the data structure, leading to the rejection
by WUT [80]; however, data changes that are too small may
not be enough to trigger new execution flows. Since in the
initial phases web API fuzzers need to explore more code
regions before exploiting them with mutation attacks, pre-
vious studies designed several mutation strategies only to
generate requests that bring more code coverage, as follows.
Response dictionary (RD)

Besides using random data, Viglianisi et al. [85] use a
response dictionary containing a map between field names
and their valid values to complement the default dictionary.
The valid values come from the values that appear in the valid
HTTP responses. Reusing the already tested values is effec-
tive, especially for certain types whose values are generated
by the WUT, such as id. However, because of the devel-
oper’s carelessness, the responses that are supposed to use
the same parameter names may bring names that are slightly
different to the existing ones yet are the same semantically.
For instance, a response from the WUT contains nameid, but
another response from a different function carries id_name
instead of nameid. Hence, the authors also prepared strate-
gies to match similar field names. They match those names
with other variations that may happen (e.g., nameid should
be matched to id_name). Lin et al. [59] also use the response
dictionary idea to build a hierarchically tree-shaped resource
pool to hold each resource’s possible values. This pool data
is extracted from response messages.

Corpus mutation (CM) In the context of web API fuzzing,
a corpus is the place to put interesting HTTP requests (e.g.,
a request that brings a crash). Some researchers maintain
this corpus to reuse such requests in the mutation process.
For example, Trickel et al. [82] blend the combination of
parameter names and values between the requests stored in
the corpus to generate a mutated request.

Adaptive hypermutation (AH) Doing random mutation or
using the response dictionary can be tricky for web API
fuzzing because a WUT may treat each request parameter
differently. For example, ina WUT, an id field can be checked
multiple times because it may relate to another data table, so
it must be correct. Still, a name may be automatically used
without performing a deep examination, so using very var-
ied names will always result in the same successful response

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page170f28 73

Impact will influence the weight

Action Gene \Weight M:}::'eon Selected? Mutated gene

Al saQL g1:Int w1 mr1 X g1:Int
g ' a2: Double | w2 mr2 X a2: Double
E A2: REST | g3: Object | w3 mr3 '} Mg3: Object
°
c " "
= | A3: REST | 94: Object | w4 mr4 X g4: Object

a5: Regex | wb mr5] Mg5: Regex
Gene Impact

Gene selection

mutation calculation

Fig.9 Illustration of the adaptive hypermutation proposed by Zhang et
al.[97]. One individual consisting of some actions (e.g., HTTP requests)
has many genes, and each gen has a different probability of being
selected for mutation. The probability depends on the impact or feed-
back from the WUT. The impact will also influence how narrow the
mutation range is

from the WUT. Zhang et al. [97] explained this situation in
detail in which some parameters do not impact WUT exe-
cution flow. Spending too much time mutating them will be
useless because it will not improve the effectiveness of the
fuzzer.

Therefore, inspired by gene mutations, they proposed an

adaptive hypermutation to select and mutate genes adaptively
based on their feedback and mutation history. This strategy is
called hypermutation because it applies high mutation rates,
leading to the mutation of multiple genes on average. One
gen corresponds to one HTTP request parameter with either
an atomic type (e.g., integer or boolean) or artificial types
consisting of other genes (e.g., Date object consisting of day,
month, and year). The feedback can be how many fuzzing
objectives (e.g., code coverage) are achieved or the branch
distance score (recall Section 5.3.1). Based on the mutation
history, this strategy will only select genes that can help
achieve the fuzzing objectives. The selected genes will be
mutated differently depending on the type. For example, the
mutated integer value will be calculated using formula a 42
which a is the old value and i is the random value within an
adaptive range that depends on the impact score. For more
detail, see an illustration in Figure 9. The figure explains
that only chosen genes, instead of all, will be mutated in the
mutation process.
Attention-based models (AM) Lyu et al. [62] employs a trend-
ing machine learning method, an attention-based model, to
help produce plenty of test cases that have more impacts on
the WUT. They utilise such a model to learn the implicit rela-
tionship between parameter name-value pairs. They designed
the model consisting of a Gated Recurrent Unit (GRU) neu-
ral network [18], an attention layer [61], and a linear layer to
result in valid param-value pairs for each request name. Dur-
ing the fuzzer runs, the collection module collects requests
with valid responses to be set up as the training data for
the model, in which a single row of the training data is in
the form of < request,ame >< paramyalue; > .. <
paramyalue, >. The fuzzer retrains the model every two
hours from scratch.

5.4.3 Problem: more malicious requests

Generating error cases can be tricky because the fuzzer can-
not simply use random data. Since the malformed input is
expected to test exceptional application scenarios, utilising
the random data generator is insufficient to assess all possi-
ble error schemes. Fuzzer should introduce the faulty inputs
slowly to reach deeper bug codes hidden in deeply nested
conditionals. Most web API fuzzing frameworks adopt this
idea and propose several strategies as follows.

Constraint violation (CV) Constraint violation techniques
are the most commonly used techniques to create incorrect
input and potentially cause WUT to crash. Fuzzing gener-
ally knows the constraints in filling valid values to the HTTP
request, so at this time, it just ignores the constraint rules.
This technique involves: 1) changing the data type of request
parameters (e.g., from String to an array) [80], 2) missing
the required request parameters [85], 3) violating the spe-
cific field’s constraint (e.g., giving a long string for a field
setting up the maxLength constraint). However, implement-
ing this strategy too aggressively in a single HTTP request
can lead to "400 bad requests" because the server considers
it a malformed HTTP request.

Rule-based schema mutator (RSM) Godefroid et al. [38] for-
mulated some schema fuzzing rules for the schema mutator.
The schema in this context is the HTTP request body con-
sisting of parameter name-value pairs. This schema can be
seen as a tree structure because certain parameters may have
child parameters. The schema fuzzing rules involve the node
rule, which defines the node modification techniques, and the
tree rule, which determines which part of the schema will
be fuzzed. The node rules cover dropping one child node,
removing all nodes and keeping only one node, duplicating
anew child node, and changing the node type. Then, the tree
rules encompass picking a single node, choosing a path con-
sisting of several nodes, or selecting all nodes, to apply to
the node rules.

Vulnerability dictionary (VD) To trigger particular vulner-
abilities, Gauthier et al. [33] fill specific HTTP parameter
values with the values from a pre-defined dictionary of vul-
nerable payloads. This dictionary contains a set of vulnerable
payloads mapping to certain vulnerability types. For exam-
ple, when fuzzing requests a SQL injection payload for the
name field, the dictionary will deliver strings like * OR
*17='1" —. Van Rooij et al. [80] employ a real-life XSS
payload dictionary to bring their fuzzing framework effective
malicious data. Zhao et al. [102] determined special seeds
containing commands or functions (e.g., command ’system’
in Linux) for triggering a PHP Remote Command/Code Exe-
cution (RCE) vulnerability. Based on the mutation rule, their
fuzzing framework will take a particular seed to be combined
with the formula forming the test case. Zhang et al. [95] use

@ Springer

73 Page 18 0f 28

I. P. A. Dharmaadi et al.

the same concept, but the initial seeds contain SQL injection
payload.

Tracked fault generator (TFG) Laranjeiro et al. [51] employ
a fault generator to insert fault codes into valid API requests
guided by a Fault Mapper. The mapper tracks the inserted
faults and their injection location in API requests to avoid
exploring already visited locations. The fault dictionary pro-
duces concrete faults containing 57 fault rules, such as
replacing valid values with null, removing random elements
in an array, and others.

Answer to RQ6: To expand the existing input to uncover
deeper security vulnerabilities, most web API fuzzers
use randomly modified values and dictionaries (either
response or vulnerability dictionary). The others use corpus
mutation, adaptive hypermutation, attention-based model,
constraint violation, rule-base schema mutator, and tracked
fault generator.

5.5 Choosing WUT for experimental evaluation

RQ7: What security benchmarks are used for empirical
evaluations?

All fuzzing researchers conducted experimental studies
using various benchmarks to evaluate whether the proposed
works were better than the previous ones. Generally, they
test their fuzzers on third-party security benchmarks, public
(online) web applications, or local benchmarks they prepare.

5.5.1 Third-party security benchmarks

To evaluate their fuzzers in catching security-related bugs,
around 21% of the existing studies employ third-party secu-
rity benchmarks as their WUTs. The third-party benchmarks,
also called test-bed applications, are designed by other peo-
ple to contain many bugs for cyber security learning [23].
Some examples of test-bed applications are WebGoat’ and
Gruyere 8, which ones among the targets of KameleonFuzz
[27]. Those vulnerable web applications, built as web test-
ing education, were proven to contain XSS bugs. Compared
to other scanners, KameleonFuzz with LigRE [28] could
detect more true XSS bugs in those applications. Another
work doing similar things is BackREST [33]. It took test-bed
applications built in Node.js platforms, such as Nodegoat®.
It also compared its performance to vulnerable scanners like
Arachni'® and OWASP ZAP!! to detect SQL injection, com-

7 https://github.com/WebGoat/WebGoat
8 https://google-gruyere.appspot.com/
9 https://github.com/OWASP/NodeGoat
10 https://www.arachni-scanner.com/

1 https://www.zaproxy.org/

@ Springer

mand injection, XSS, and DoS vulnerabilities. The result
was BackREST could catch the vulnerabilities more than
the scanners. The last example is Witcher [82], which used
known vulnerable applications as its fuzzer targets, consist-
ing of 8 PHP-based web, 5 C-based firmware images, 1
Java-based web, 1 Python-based web, and 1 Node.js-based
web application, with a total of 36 known vulnerabilities. The
experiments showed that Witcher was better than Burp'? and
other tools in either bug finding or code coverage. Similarly,
Cefuzz [102] and ZokFuzz [95] used some PHP-based vul-
nerable web applications as their target, such as DVWA'3.

5.5.2 Self-developed benchmarks

In addition to leveraging third-party benchmarks populated
with known vulnerable web applications, researchers in web
API fuzzing can build their custom benchmarks by deploying
popular open-source web applications. While this approach
requires extra work to identify or introduce security vulner-
abilities to the collected applications, it offers the advantage
of performing fuzzing on more modern web environments.
Approximately 45% of prior research chose to build their
own benchmarks to meet their specific evaluation needs. For
example, EvoMaster Benchmark (EMB) [10] holding vari-
ous web applications, such as Java, Kotlin, JavaScript, and
C# was developed to test EvoMaster [6]. On the other hand,
the work of Van Rooij et al. [80] proposed an actual bug
injection methodology into PHP-based web applications to
create a proper benchmark. Getting inspiration from similar
models like LAVA [25], they gave a standard way to evaluate
identical fuzzers in finding web vulnerabilities. Their bench-
mark contained CE-Phoenix !4, Joomla!?, and others that had
been injected with XSS vulnerabilities

5.5.3 Public WUT

Some prior studies (34%) chose public web applications as
the fuzzer target. Even though those applications can be rela-
tively easy since researchers do not need to install and deploy
them, they have some limitations: no source code and no
instrumentation. No source code means the fuzzer cannot
analyse the code workflow to generate better test cases, and
no instrumentation means the fuzzer does not know what is
happening during the execution of the WUT. Therefore, the
WUT must be treated as a black box. Fuzzing researchers can
consider public web applications listed in the APIS.Guru'®

12 https://portswigger.net/burp/vulnerability-scanner
13 https://github.com/digininja/DVWA

14 https://phoenixcart.org/

15 https://www.joomla.org/

16 https://apis.guru/browse-apis/

https://github.com/WebGoat/WebGoat
https://google-gruyere.appspot.com/
https://github.com/OWASP/NodeGoat
https://www.arachni-scanner.com/
https://www.zaproxy.org/
https://portswigger.net/burp/vulnerability-scanner
https://github.com/digininja/DVWA
https://phoenixcart.org/
https://www.joomla.org/
https://apis.guru/browse-apis/

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page190f28 73

website. Viglianisi et al. [85] used the website as the refer-
ence to test 87 web APIs, perform 2612 testing operations,
and find 151 internal error faults. Furthermore, Laranjeiro et
al. [51], who designed bBOXRT implemented in Java, tested
52 public REST services comprising 1,351 operations. The
fuzzer detected at least one robustness problem (explained in
Section 5.3.3) in half of the services tested.

On the other hand, some fuzzing papers considered popu-
lar and public RESTful Web API as their target. For example,
Atlidakis et al. [12] tested their fuzzer on some popu-
lar online RESTful APIs: three Azure'” and one Microsoft
Office365'8 online services. Their fuzzer found some bugs
in those services that were 500-response codes. In addi-
tion, they also conducted an experiment on GitLab API'
deployed on a local server and found bugs in commit and
branch-related operation APIs. The other web API fuzzer,
RESTest [67], also performed similar experiments, evalu-
ating its performance on some popular web applications:
GitHub??, Foursquare’!, and others. It got bugs related
to server and client error response codes. Another exam-
ple is Peng et al. [76] tested their fuzzer to ByteDance”?.

Answer to RQ7: For empirical evaluations, most stud-
ies (45%) develop new benchmarks based on popular
open-source web applications. Other works use publicly
available WUT (34%) or employ third-party security
benchmarks (21%).

5.6 Summary

Based on the explanations in prior sections, we summarise
the information on the existing web API fuzzers in Table 4.
Instead of paper-based, we resume the insight based on the
fuzzer the researchers introduced in their works. We got 19
distinct web API fuzzers even though we reviewed 47 papers
because one framework can be explained or improved by
multiple studies. For example, EvoMaster is used in nine
studies [6] [5] [8] [7]1 [100] [9] [97] [39] [99]. We sorted the
frameworks based on the year they were published first. Most
of them are black-box fuzzing, which only relies on HTTP
responses. The others also utilise the HTTP response but are
supplemented by other feedback, as listed in the table.

7 https://azure.microsoft.com/en-us/

8

https://www.office.com/

—_

9 https://docs.gitlab.com/ee/api/

[S)

O https://github.com/

2 https://foursquare.com/

https://www.bytedance.com/en/

6 Open challenges

‘ RQ8: What open challenges are identified?

Section 5 has explained a variety of prior approaches and
techniques to enable fuzzing strategies for web application
security testing. Despite the progress made, some shortcom-
ings and challenges still need to be addressed. This section
discusses open challenges in web API fuzzers mentioned in
the summarized studies. The challenges are extracted from
the relevant sections of each reviewed paper. The challenges
mentioned in those papers that are tackled by more recent
studies are excluded from the discussion.

6.1 Less effective source code instrumentation

In many contexts, the use of grey or white-box web API
fuzzers might provide better results for fuzzing effectiveness,
assuming that access to the WUT source code is possible.
However, using these fuzzing approaches may introduce an
additional overhead due to the required preparation time
(e.g., instrumentation) before testing. As explained in Section
5.3.2, various instrumentation methods have been developed
over the years for interpreted web applications because these
applications are popular WUTs for web API fuzzers. How-
ever, whether the instrumentation pays off is a valid question.

Generally, the instrumentation makes the source code
bigger and slows down the server execution. It is caused
by the probe code placed everywhere [80] in the WUT. In
addition, the instrumentation process forces the WUT to be
re-compiled and rebuilt, which certainly takes a significant
amount of time. According to our preliminary experiments
in relatively big Java-based web applications using EvoMas-
ter fuzzer [5], carrying out fuzz testing for a short duration
(e.g., 1 hour) is often ineffective. This is because the fuzzing
process is only carried out after the re-compile and re-build
process has been completed, and in some cases, the compile
and build processes may take longer than the fuzzing pro-
cess itself. The problem becomes more acute when the web
developers are expected to deliver the application as quickly
as possible, which may render the instrumentation process
unacceptable. Therefore, the existing instrumentation tech-
niques can be less effective in real-world settings where WUT
consists of many files and the development is fast-paced.

Designing a custom interpreter to catch interesting exe-
cution paths, rather than instrumenting the source code, can
be a possible workaround to this problem because the major-
ity of web applications are interpreter-based. Trickel et al.
[82] have applied this idea to augment the PHP interpreter
tool for coverage analysis. However, there is still no experi-
mental study that compares fuzzing with instrumentation and
fuzzing without instrumentation (e.g., interpreter augmenta-
tion) in terms of effectiveness.

@ Springer

https://azure.microsoft.com/en-us/
https://www.office.com/
https://docs.gitlab.com/ee/api/
https://github.com/
https://foursquare.com/
https://www.bytedance.com/en/

I. P. A. Dharmaadi et al.

Page 20 of 28

73

J10JeI0UQS J[Ne) PAYORI], = D], I0JeINUI BUWIAYDS paseq-o[ny = JNSY ‘Areuondrp ANjiqersunp

= A ‘UONEJOIA Jurensuo) = AD 9And9[qo juspuadopur Auejy = QIIA ‘[OPOW paseq-uonuany = NV ‘uoneinuradAy sandepy = Hvy ‘voneinwi sndio) = D ‘Areuonorp asuodsay = (Y ‘Onfea
payrpowr Afwopuey = AJNY ‘02dS [dV-uedQ ozinn = B Xoa-amym =] x0q-£213 = @ Xo9-¥rlq= g 909fo1d 901nos-uado = 5] ‘urzzng USALIP-AI[IqRIdUINA = [NA ‘SUTZZNJ USALIP-USBID) = SID)

yser) osuodsar dLLH AT oudIul TH] qamolqnd g sIo [esT g

039 ‘uone[edsy a39M1ALd ‘TIOS osuodsar J1.LH da uonejouue [JyuedQ B yrewyouaq Aed-pic g IO [#2] SNILLOVN
yser) osuodsar JILLH JAV UOTIO9[aS PAUILIO-ISU| B qam orqnd g 1o K [2o] YANIN

IQAD ‘TIOS 9519409 2p0) no Io[merd Sf 2 TALLH Paseq-Aqny ‘paseq-S[opoN ‘paseq-BAB[‘PIseq-UoyIAd ‘peseq-dHd QA K (28] 1ououm

yser) osuodsar JI.LH ad 2IMoNNS Paseq-a1L, J qam orqnd g 10 [6S] LSTYOF

910 ‘§SSX dsuodsar dILLH dA o[meld TIANLLH jrewyoueq Aued-pic g InA [€1] Ldvm

yser) osuodsar IL.LH ad [9¢] ydei3 Aouspuadoq JIBWYOUIG AOIAIISOIONN (P S1D B [SEl HATHOYOVIA

SSX TT0S esuodsar J1LH dA Kouapuadop oN peseq-dHd [I"A [S6] zznyyoz

HOUY dHd ¥oBqpa9) Jule], dA Kouapuadop oN paseq-dHd [JIPA [zo1] zznJaD

yser) osuodsar JI.LH ad a1MONISs paseq-ad1L, J§ QmoIgnd g o K [68] Loy

SoQ ‘SSX ‘IAAD TI0S 0eqpasj jule], daa Io[merd Sf Paseq-SfoPON (@ [MA [eel LSaPIORY
yser) DL AN 9rerdwa) paugep-a1g yrewyoudq Aued-pic g sID K [+8] zznquensy

SSX 9519409 2p0) aa Jo[meld TIANLLH Paseq-dHd @ ["A K [08] Zzndqam

yser) osuodsar JLLH Il + Epeddd Kouspuadop oN qom o1qnd g 1D K] [29] 152159y

'H'S'VY'D esuodsar LIH dA Kduapuadap oN B QoM oTqnd g SO K [16] Tyxo49a

[61] yuowuSisse ssey ‘yser) osuodsar J1.LH ad ydei3 Aouopuadoq B Qmonqnd sty K [c8] uanysarIsoy
[11] uoneora somosay ‘yser) asuodsar JIL.LH [8¢] INSYH ydei3 Kouspuado(q B qomorqngd g s1D 5] [21] 1911L.SHY
Yserd 9douelsip youelyq [L6]l HV [£] Surjduues jrewg B [6€] Paseq-LAN" ‘[66] Paseq-S[OPON ‘Paseq-INAL [S1D K [9] 13seN0AT

SSX 3deqposj jure], dA [8¢] oMeId TINLH yrewrgouaq Aired-pic ggInA [LT] Zznguodpoures

Ayiqerournp yoeqpaog uonRINIA uonerouad ayedway, LOA POURIN QuIRU 197ZN]

‘uostedwod 10zzny [V 99+ 9|qel

pringer

A

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page210f28 73

Fig. 10 Illustration of a web
application using the
micro-service approach. Each
service treats other services as
black-box systems, which means
it only sends inputs and receives
outputs through provided
communication channels and
interfaces without having any
internal information. Solely
testing the API gateway can be
misleading since the tester does
not know which service crashes

Web App

<>

6.2 Complexity of handling microservice
architecture

Most world-leading web applications are using microser-
vice architecture because it brings many benefits, such as
ease of maintenance [55]. Since this kind of application is
designed to be distributed, and each microservice typically
operates independently, testing interactions between these
distributed components can be complex [15] (see Figure 10).
This complexity presents unique testing challenges because
the software tester must isolate each service properly to be
able to distinguish the regions of the code where the problems
arise. When only testing the main service without consider-
ing such complex interactions behind it, it may look as if
the main service crashes often even though the real problem
originates from other services that do not respond properly.
In the microservice architecture, the main services expos-
ing APIs to external users are called edge microservices;
the others are called internal microservices because they
expose their APIs only for internal services [45]. In addi-
tion, employing existing web API fuzzing techniques that
are not designed for microservice applications may require
the application testers to install and configure fuzzer for each
service. It means that the fuzzer does not treat the WUT as
a whole. The web API fuzzing framework should ideally be
able to handle this enterprise architecture at scale.

Recently, researchers designed testing approaches to han-
dle microservice architecture. For example, Giamattei et
al. [35] proposed a grey-box strategy for automated test-
ing and monitoring of internal microservices interactions.
Their recent experiment [36] showed that their proposed
framework delivered crucial information about internal cov-
erage and failure, and inferred causality in failure chains.
Zhang et al. [101] also developed a white-box fuzzer spe-
cially designed for RPC-based APIs that are commonly used
in microservice architectures. However, both studies stated
that further reearch needed to improve the fuzzers in this
setting.

API| Gateway

Ordering
API €

Voirele DevOps Team A

Customer

API PostgreSQL

Delivery
API QLServer

Y

6.3 The difficulty of testing public WUT

Most reviewed fuzzing papers use online web applications
(e.g., Youtube API?®) as the WUTs since they are popular
and used by a large number of people. Even though preparing
those WUTs for testing is easy: no installation or deployment
is required before fuzz testing, some challenges exist that
make their testing difficult.

Firstly, since the majority of those popular web appli-
cations are closed-source, users can only test them using a
black-box web API fuzzer, leading to code coverage igno-
rance. Without code coverage information, the fuzzers likely
test only a small part of the WUT, which may render their
results invalid. Secondly, popular web applications managed
by big companies usually prohibit massive requests from the
public [89]. Besides determining low web resource quota,
they also usually set up short-lived access tokens [12] that
require the users to do the authentication process more often.
These two challenges make use of (online) closed-source
WUTs for evaluating fuzzers less ideal.

Lastly, even if the researchers employ open-source WUTs
(e.g., WordPress?*), performing white-box fuzzing over
these WUTSs, that is, analyzing the source code to get more
comprehensive understanding of the code, is difficult because
those WUTSs are often large projects with complex source
codes [82]. This situation requires the fuzzers to understand
the recent programming features the WUT uses, such as
object-oriented technique and MVC (model-view-controller)
architecture. Therefore, more studies need to address this last
challenge to improve existing web API fuzzers.

6.4 Lack of corpus diversity

Initial test cases play an essential role in all kinds of fuzzing
since they are the initial corpus for the mutation process.
Corpus in the web API context is the HTTP request sequence

collection. If the corpus provides highly diverse, valid inputs,

2 hitps://developers.google.com/youtube/v3
24 hitps://wordpress.org/

@ Springer

https://developers.google.com/youtube/v3
https://wordpress.org/

73 Page22o0f28

I. P. A. Dharmaadi et al.

the work of the mutator can become easier because the muta-
tor does not need to explore many more execution paths; it
"just" needs to trigger any error in visited vulnerable codes.
As explained in Section 5, existing web API fuzzing frame-
works usually use only OpenAPI documents or HTML pages
to create the initial corpus. Those documents are useful to
help the fuzzer; however, some studies have shown that those
documents may be incomplete. For example, the work of
Deng et al. [24] states that the information extracted from
such documents is insufficient to produce diverse yet cor-
rect requests. Relying solely on these limited documents to
generate an initial corpus for fuzzing can be risky because it
produces low-quality corpus that will significantly affect the
overall fuzzer performance.

Even though more comprehensive OpenAPI documents
can result in a bigger corpus with more HTTP requests,
the corpus should be minimised before use, which means
there should be a process to discard similar requests that lead
to the same execution paths. The study from Herrera et al.
[43] shows that the minimised corpus can lead the fuzzer to
explore new execution paths faster because it does not need
to waste time executing inputs that produce an already known
output. To our knowledge, most existing works on web API
fuzzer do not perform the corpus minimisation process yet.

6.5 Lack of web API fuzzing benchmarks

Researchers have developed various web API fuzzers using
black-box, grey-box, or white-box approaches, and more are
expected to come. These developers of fuzzing frameworks
often claim that their fuzzers are really good at finding web
vulnerabilities over a certain set of WUTSs. However, there is
neither a widely accepted security benchmark for web API
fuzzers nor established security-relevant metrics in compar-
ing the performances of the fuzzers. For a proper and fair
evaluation and comparison of fuzzers, comprehensive infor-
mation about bug numbers detected by the fuzzers, including
the miss and false bugs rate, is needed. Therefore, it is essen-
tial to develop a particular benchmark for web API fuzzers.
Similar to binary fuzzing benchmarks (e.g., [42]), the Web
API fuzzing benchmarks should contain a diverse set of
WUTs with injected bugs or vulnerabilities, integrate some
of the well-known fuzzers and some scripts to automate all
processes: deploying the WUTSs, injecting the vulnerabilities,
starting the fuzzers, and counting all evaluation metrics.
Even though there is no extensive web API fuzzing bench-
mark yet as in binary fuzzing, some benchmarks that have
been made publicly available, as (explained in Section 5.5.2).
For example, Arcuri et al. [10] released EvoMaster Bench-
mark (EMB), a set of comprehensive WUTSs for evaluating
EvoMaster fuzzer. However, the WUTs in EMB are original
applications released by other developers, without annotated
security-related bugs inside them. Without the bug informa-

@ Springer

tion, benchmark users cannot compare the web API fuzzer
performance in catching bugs.

Answer to RQS8: Identified open challenges are less effec-
tive source code instrumentation in huge web applications,
the complexity of handling microservice architecture, the
difficulty of testing the public WUT, lack of corpus diver-
sity, and lack of web API fuzzing benchmark.

7 Potential research directions

Apart from the open challenges described in Section 6, we
identified some potential research directions related to web
API fuzzing. In doing so, we have taken into account the
technologies that are currently being developed: web client
programming, mobile web, and generative Al

7.1 Fuzzing for web client programming

Given the increasingly sophisticated web applications, the
load on web servers has been growing. For example, recom-
mendation services employing artificial intelligence methods
in marketplace platforms are resource-hungry. The work of
Wai et al. [87] investigates web client programming as one of
the solutions to distribute the server load. This programming
paradigm tries to move some of the computational processes
from servers to client devices. This approach is reasonable
since smartphones and computer desktops will constantly
evolve and bring new hardware features to carry out sophis-
ticated computations. Nowadays, while Java-script language
can be considered as the main web client programming lan-
guage, itis expected that more client programming languages
that offer more portable and efficient features will be adopted
in the future. For example, WebAssembly, developed by
Haas et al. [41] together with the W3C community to bring
low-level C programming into the web, has attracted much
attention from the fuzzing community. Therefore, employing
fuzzing for this application type can become popular in the
future.

7.2 Fuzzing mobile web applications

Many web pages are prepared/delivered explicitly for/to
mobile devices [81]. Even though mobile web applications
are generally similar to regular web applications, there are
certain differences. Both usually have the same content
sources, but they are rendered differently depending on the
clientdevice’s capabilities. For example, the mobile web does
not show complex user interfaces in order to provide bet-
ter user experiences on a smaller screen. Next, some mobile
hardware limitations may cause the mobile device not to exe-
cute complex client-side (e.g., Javascript) code. Considering

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page230f28 73

the growth of the smartphone market, many more mobile
web applications are expected to be launched. Testing this
type of WUTs is challenging because fuzzers often demand
more sophisticated computational resources that the mobile
devices do not have. Developing a fuzzing approach for
smartphones or emulating the mobile web on a desktop can be
apossible alternative even though there are certain drawbacks
of this approach. For example, mobile web emulation can be
less accurate since mobile devices are highly diverse, from
old to cutting-edge systems. Whatever approach is chosen,
anticipating this technology as early as possible is a reason-
able consideration.

7.3 Generative Al for web fuzzing

Generative artificial intelligence (Al) is a class of Al tech-
niques and models that can generate new content, such as
text, images, music, or other forms of data [30]. These mod-
els are designed to learn the patterns and structures present
in the training data and then produce outputs with similar
characteristics. Generative Al, a branch of machine learning,
has become increasingly popular in diverse domains includ-
ing software testing as it can generate content that was not
explicitly present in the training data. Some reviewed works
in web API fuzzing already utilised powerful Al techniques
partially in some steps. For example, Lyu et al. [62] employed
the attention model for filling values in the template rendering
stage. It is estimated that more papers will adopt generative
Al techniques fully to generate HTTP requests to test web
APl in the future.

7.4 Support for diverse web security vulnerabilities

In addition to using the existing OWASP vulnerability list
[74] to define vulnerabilities to be detected, developing
strategies for the detection of new bug types that are dif-
ferent from the well-known ones is a promising research
direction. Since the OWASP list is based on past investiga-
tions, imagining far ahead about potential faults that may not
have happened yet is essential, especially by considering/pre-
dicting user habits and bugs that may occur in the future.
For example, the work of Atlidakis et al. [11] identified a
new vulnerability family that can result in the hijacking of a
WUT and developed a method to detect bugs related to this
vulnerability. They defined four new security rules related
to web resource management: use-after-free, resource-leak,
resource-hierarchy, and user-namespace rules. If the web API
violates one of those rules, the authors conclude that the WUT
has this vulnerability.

Extending the existing bug criteria can also be a good
option besides specifying completely new security bugs. This
is also important in enabling security practitioners to catch
complex bugs easily. For instance, the work of Pan et al.

s oW

9

[75] developed a strategy to detect Excessive Data Expo-
sure (EDE) vulnerability. Even though OWASP included
this vulnerability, catching this bug is not easy since it does
not trigger a crash or an unexpected behaviour. Therefore,
determining more precise test oracles will help fuzzers to
recognise the vulnerability. Finally, among the vulnerabili-
ties covered by the OWASP list, only two types, SQL/code
injection and XSS, have been studied extensively. Effective
detection strategies for the other vulnerabilities are still quite
open to research.

8 Threats to validity

Paper selection Choosing relevant papers from search databases
and filtering irrelevant studies requires manual effort and
expertise. As a result, this process might be susceptible to
human error. The authors did searching and filtering of the
paper collection more than two times to reduce that possibil-
ity.

Information extraction Analysing and extracting relevant
information from the selected papers was done manually
too. Although the authors are confident with the results, they
might also be susceptible to human misunderstanding. To
reduce this chance, the authors read and analysed the papers
more than two times.

9 Conclusion

In this survey paper, we reviewed articles presenting research
results on web API fuzzing frameworks. We classified them
according to their testing objectives and techniques used to
generate valid HTTP requests for attack surface exploration,
utilise security feedback from the web under test (WUT),
and mutate existing requests to uncover more security vul-
nerabilities. In addition, some insights about open challenges
and anticipated research related to web API fuzzing are pro-
vided. Ultimately, we aim this paper to serve as a foundation
for further research in web API fuzzer.

Appendix A OpenAPI Specification Example

openapi: "3.1.0"
info:
title: API Example
paths:
/book:
get:
parameters:
- name: limit
in: Qquery

@ Springer

10

73 Page 24 0of 28

I. P. A. Dharmaadi et al.

description: How many items

to return at one time (max 100)
required: false
schema:
type: integer
maximum: 100
format: int32
responses:
r200 " :
description: A paged array of
books
headers:
X-next:

description: A link to
the next page of responses

schema :
type: string
content:
application/json:
schema :
Sref: "#/components/
schemas /books"
default:
description: unexpected error
content:
application/json:
schema :
Sref: "#/components/

schemas/Error"

Appendix B Grammar example generated by
RESTler [12]

Request (
static ("GET /api/customer/data"),
static ("?idcustomer="),
fuzzable ("integer") ,
static ("&name="),
fuzzable ("string") ,
static ("HTTP/1.1"),
static ("Accept:application/json"),

Acknowledgements The authors thank Tariq Bontekoe for proofread-
ing this article.

Author Contributions The first author conducted the literature survey
and wrote most of the paper; the second author contributed to the dis-
cussions and reviewed the paper; and the third author contributed to the
discussions, writing and reviewing of the paper.

Funding The first author has received scholarship funding from the
Center for Financing of Higher Education (BPPT) and the Indonesia

Endowment Fund for Education (LPDP) under the Indonesian scholar-
ship schema.

Declarations

Conflict of Interest The authors do not have any financial or non-
financial interests to disclose that are relevant to the content.

Ethical Approval Not applicable.

@ Springer

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alonso, Juan C.: Automated generation of realistic test inputs for
web APIs. en. In: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Athens Greece:
ACM, Aug. (2021). pp. 1666—-1668. https://dl.acm.org/doi/10.
1145/3468264.3473491

2. Alonso, Juan C. et al.: ARTE: automated generation of realis-
tic test inputs for web APIs. In: IEEE Transactions on Software
Engineering. Conference Name: IEEE Transactions on Software
Engineering, pp. 348-363. (2023). https://doi.org/10.1109/TSE.
2022.3150618

3. Amankwah, Richard et al.. An empirical comparison of
commercial and open-source web vulnerability scanners.
en. In: Software: Practice and Experience. pp. 1842-1857.
(2020). https://doi.org/10.1002/spe.2870. https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2870

4. Zeller, Andreas et al.: The Fuzzing Book. (2023). https://www.
fuzzingbook.org/

5. Arcuri, A.: EvoMaster: Evolutionary Multi-context Automated
System Test Generation’. In: 2018 IEEE 11th International Con-
ference on Software Testing, Verification and Validation (ICST).
IEEE pp. 394-397, (2018) https://doi.org/10.1109/ICST.2018.
00046

6. Arcuri, A.: RESTful API Automated Test Case Generation. In:
2017 IEEE International Conference on Software Quality, Relia-
bility and Security (QRS). IEEE pp. 9-20, (2017) https://doi.org/
10.1109/QRS.2017.11(2017)

7. Arcuri, A.: RESTful APl automated test case generation with Evo-
Master. en. In: ACM Transactions on Software Engineering and
Methodology, pp.1-37, (2019). https://doi.org/10.1145/3293455.
https://dl.acm.org/doi/10.1145/3293455

8. Arcuri, A.: Test suite generation with the Many Indepen-
dent Objective (MIO) algorithm. en. In: Information and

Software Technology, (2018). https://doi.org/10.1016/j.
infsof.2018.05.003. https://reader.elsevier.com/reader/sd/pii/
S0950584917304822

9. Arcuri, A., Galeotti, JP.: enhancing search-based testing with
testability transformations for existing APIs. en. ACM Trans-
actions on Software Engineering and Methodology, pp. 1-34,
(2022). https://doi.org/10.1145/3477271. https://dl.acm.org/doi/
10.1145/3477271

10. Arcuri, A., et al.: EMB: A curated corpus of web/enterprise
applications and library support for software testing research.
In: 2023 IEEE Conference on Software Testing, Verification and
Validation (ICST), pp. 433-442, (2023). https://doi.org/10.1109/
ICST57152.2023.00047

11. Atlidakis, V., Godefroid, P., Polishchuk, M.: Checking security
properties of cloud service REST APIs. In: 2020 IEEE 13th

https://orcid.org/0000-0002-5331-4033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://dl.acm.org/doi/10.1145/3468264.3473491
https://dl.acm.org/doi/10.1145/3468264.3473491
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1109/TSE.2022.3150618
https://doi.org/10.1002/spe.2870
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2870
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2870
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/QRS.2017.11
https://doi.org/10.1109/QRS.2017.11
https://doi.org/10.1145/3293455
https://dl.acm.org/doi/10.1145/3293455
https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1016/j.infsof.2018.05.003
https://reader.elsevier.com/reader/sd/pii/S0950584917304822
https://reader.elsevier.com/reader/sd/pii/S0950584917304822
https://doi.org/10.1145/3477271
https://dl.acm.org/doi/10.1145/3477271
https://dl.acm.org/doi/10.1145/3477271
https://doi.org/10.1109/ICST57152.2023.00047
https://doi.org/10.1109/ICST57152.2023.00047

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page250f28 73

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

International Conference on Software Testing, Validation and Ver-
ification (ICST). IEEE, pp. 387-397, (2020). https://doi.org/10.
1109/1CST46399.2020.00046

Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: Stateful
REST API Fuzzing. In: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), IEEE, pp. 748-758,
(2019). https://doi.org/10.1109/ICSE.2019.00083

Auricchio, N., et al.: An automated approach to Web Offen-
sive Security. en. In: Computer Communications, pp. 248-261,
(2022). https://doi.org/10.1016/j.comcom.2022.08.018. https://
linkinghub.elsevier.com/retrieve/pii/S0140366422003267

Bizer, C., et al. DBpedia - A crystallization point for the Web
of Data. In: Journal of Web Semantics, pp.154-165, (2009).
https://doi.org/10.1016/j.websem.2009.07.002. https://www.
sciencedirect.com/science/article/pii/S1570826809000225
Blinowski, G., Ojdowska, A., Przybylek, A.: Monolithic vs.
microservice architecture: a performance and scalability evalu-
ation. In: IEEE Access. Conference Name: IEEE Access, pp.
20357-20374, (2022) https://doi.org/10.1109/ACCESS.2022.
3152803

Biilthoff, F., Maleshkova, M.: RESTful or RESTless — Current
State of Today’s Top Web APIs. en. In: Semantic Web: ESWC
2014 Satellite Events. Ed. by Valentina Presutti et al. Series Title:
Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, pp.64—74, (2014). https://doi.org/10.1007/978-
3-319-11955-7_6. http://link.springer.com/10.1007/978-3-319-
11955-7_6

Chen, C., et al.: A systematic review of fuzzing techniques.
en. In: Computers & Security, pp. 118-137, (2018). https:/
doi.org/10.1016/j.cose.2018.02.002. https://linkinghub.elsevier.
com/retrieve/pii/S0167404818300658

Cho, K., et al. Learning Phrase Representations using RNN
Encoder—Decoder for Statistical Machine Translation. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Ed. by Alessandro Moschitti, Bo
Pang, and Walter Daelemans. Doha, Qatar: Association for Com-
putational Linguistics, pp. 1724-1734, (2014). https://doi.org/10.
3115/v1/D14-1179. https://aclanthology.org/D14-1179
Corradini, D., Pasqua, M., Ceccato, M.: Automated Black-Box
Testing of Mass Assignment Vulnerabilities in RESTful APIs. en.
In: 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). Melbourne, Australia: IEEE, pp. 2553-2564,
(2023). https://doi.org/10.1109/ICSE48619.2023.00213. https://
ieeexplore.ieee.org/document/10172607/

Corradini, D., et al.: Automated black-box testing of nominal
and error scenarios in RESTful APIs. en. In: Software Testing,
Verification and Reliability, pp. 1808, (2022). https://doi.org/10.
1002/stvr.1808. https://onlinelibrary.wiley.com/doi/abs/10.1002/
stvr.1808

Corradini, D., et al.: RestTestGen: an extensible framework for
automated black-box testing of RESTful APIs. en. In: 2022 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). Limassol, Cyprus: IEEE, pp. 504-508, (2022). https://
doi.org/10.1109/ICSME55016.2022.00068 . https://ieeexplore.
ieee.org/document/9978261/

De, B.: API Documentation. In: APl Management: An Architect’s
Guide to Developing and Managing APIs for Your Organization.
Berkeley, CA: Apress, pp. 59-80, (2017). https://doi.org/10.1007/
978-1-4842-1305-6_4

Deepa, G., Santhi TP.: Securing web applications from injec-
tion and logic vulnerabilities: Approaches and challenges. en.
In: Information and Software Technology, pp. 160-180, (2016).
https://doi.org/10.1016/].infsof.2016.02.005. https://linkinghub.
elsevier.com/retrieve/pii/S0950584916300234

Deng, G., et al. NAUTILUS: automated RESTful API vul-
nerability detection. In: Proceedings of the 32nd USENIX

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Security Symposium. Anaheim, CA, USA: USENIX Associa-
tion, pp. 5593-56009, (2023). https://www.usenix.org/conference/
usenixsecurity23/presentation/deng- gelei

Dolan-Gavitt, B., et al.: LAVA: large-scale automated vulnerabil-
ity addition. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 110-121, (2016). https://doi.org/10.1109/SP.2016.15
Doupe, A., et al.: Enemy of the State: A State-Aware Black-Box
Web Vulnerability Scanner. en. In: Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12). pp. 523—
538.(2012)

Duchene, F., et al.: KameleonFuzz: evolutionary fuzzing for
black-box XSS detection. en. In: Proceedings of the 4th ACM
conference on Data and application security and privacy. San
Antonio Texas USA: ACM, pp. 37-48, (2014). https://doi.
org/10.1145/2557547.2557550. https://dl.acm.org/doi/10.1145/
2557547.2557550

Duchene, F., et al.: LigRE: Reverse-engineering of control and
data flow models for black-box XSS detection. In: 2013 20th
Working Conference on Reverse Engineering (WCRE), pp. 252—
261, (2013). https://doi.org/10.1109/WCRE.2013.6671300

Roy Thomas Fielding: architectural styles and the design of
network-based software architectures. University of California,
Irvine (2000)

Fui-Hoon, Fiona, Nah et al.: Generative Al and Chat-
GPT: applications, challenges, and Al-human collaboration.
en. In: Journal of Information Technology Case and Appli-
cation Research, pp. 277-304, (2023). https://doi.org/10.1080/
15228053.2023.2233814. https://www.tandfonline.com/doi/full/
10.1080/15228053.2023.2233814

Fung, Adonis PH.: et al. : Scanning of real-world web applica-
tions for parameter tampering vulnerabilities. en. In: Proceedings
of the 9th ACM symposium on Information, computer and com-
munications security. Kyoto Japan: ACM, pp. 341-352, (2014).
https://doi.org/10.1145/2590296.2590324

Fuzzing Competition (C/C++ Programs). (2023). https://sbft23.
github.io/tools/fuzzing

Gauthier, F,, et al.: Experience: Model-Based, Feedback-Driven,
Greybox Web Fuzzing with BackREST. en. In: Leibniz Inter-
national Proceedings in Informatics (LIPIcs). (2022). https:/
doi.org/10.4230/LIPIcs. ECOOP.2022.29. https://drops.dagstuhl.
de/opus/volltexte/2022/16257

Get Started With The OpenAPI Specification. https://swagger.io/
solutions/getting-started- with-oas/

Giamattei, L.: et al. : Automated grey-box testing of microser-
vice architectures. en. In: 2022 IEEE 22nd International Con-
ference on Software Quality, Reliability and Security (QRS).
Guangzhou, China: IEEE, pp. 640-650. (2022). https://doi.
org/10.1109/QRS57517.2022.00070. https://ieeexplore.ieee.org/
document/10062422/

Giamattei, L., et al.: Automated functional and robustness
testing of microservice architectures. en. In: Journal of Sys-
tems and Software, pp. 111857, (2024). https://doi.org/10.
1016/j.jss.2023.111857. https://linkinghub.elsevier.com/retrieve/
pii/S0164121223002522

Godefroid, P.: Fuzzing: hack, art, and science. en. In: Communi-
cations of the ACM, pp. 70-76. (2020). https://doi.org/10.1145/
3363824. https://dl.acm.org/doi/10.1145/3363824

Godefroid, Patrice, Huang, Bo-Yuan, Polishchuk, Marina: Intel-
ligent REST API data fuzzing’. en. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineer-
ing. Virtual Event USA: ACM, pp. 725-736, (2020). https://doi.
org/10.1145/3368089.3409719. https://dl.acm.org/doi/10.1145/
3368089.3409719

Golmohammadi, A., Zhang, M., Arcuri, A.: NET/C# instru-
mentation for search-based software testing. en. In: Soft-

@ Springer

https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/ICST46399.2020.00046
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1016/j.comcom.2022.08.018
https://linkinghub.elsevier.com/retrieve/pii/S0140366422003267
https://linkinghub.elsevier.com/retrieve/pii/S0140366422003267
https://doi.org/10.1016/j.websem.2009.07.002
https://www.sciencedirect.com/science/article/pii/S1570826809000225
https://www.sciencedirect.com/science/article/pii/S1570826809000225
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1007/978-3-319-11955-7_6
https://doi.org/10.1007/978-3-319-11955-7_6
http://link.springer.com/10.1007/978-3-319-11955-7_6
http://link.springer.com/10.1007/978-3-319-11955-7_6
https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1016/j.cose.2018.02.002
https://linkinghub.elsevier.com/retrieve/pii/S0167404818300658
https://linkinghub.elsevier.com/retrieve/pii/S0167404818300658
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/D14-1179
https://doi.org/10.1109/ICSE48619.2023.00213
https://ieeexplore.ieee.org/document/10172607/
https://ieeexplore.ieee.org/document/10172607/
https://doi.org/10.1002/stvr.1808
https://doi.org/10.1002/stvr.1808
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1808
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1808
https://doi.org/10.1109/ICSME55016.2022.00068
https://doi.org/10.1109/ICSME55016.2022.00068
https://ieeexplore.ieee.org/document/9978261/
https://ieeexplore.ieee.org/document/9978261/
https://doi.org/10.1007/978-1-4842-1305-6_4
https://doi.org/10.1007/978-1-4842-1305-6_4
https://doi.org/10.1016/j.infsof.2016.02.005
https://linkinghub.elsevier.com/retrieve/pii/S0950584916300234
https://linkinghub.elsevier.com/retrieve/pii/S0950584916300234
https://www.usenix.org/conference/usenixsecurity23/presentation/deng-gelei
https://www.usenix.org/conference/usenixsecurity23/presentation/deng-gelei
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1145/2557547.2557550
https://dl.acm.org/doi/10.1145/2557547.2557550
https://dl.acm.org/doi/10.1145/2557547.2557550
https://doi.org/10.1109/WCRE.2013.6671300
https://doi.org/10.1080/15228053.2023.2233814
https://doi.org/10.1080/15228053.2023.2233814
https://www.tandfonline.com/doi/full/10.1080/15228053.2023.2233814
https://www.tandfonline.com/doi/full/10.1080/15228053.2023.2233814
https://doi.org/10.1145/2590296.2590324
https://sbft23.github.io/tools/fuzzing
https://sbft23.github.io/tools/fuzzing
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://drops.dagstuhl.de/opus/volltexte/2022/16257
https://drops.dagstuhl.de/opus/volltexte/2022/16257
https://swagger.io/solutions/getting-started-with-oas/
https://swagger.io/solutions/getting-started-with-oas/
https://doi.org/10.1109/QRS57517.2022.00070
https://doi.org/10.1109/QRS57517.2022.00070
https://ieeexplore.ieee.org/document/10062422/
https://ieeexplore.ieee.org/document/10062422/
https://doi.org/10.1016/j.jss.2023.111857
https://doi.org/10.1016/j.jss.2023.111857
https://linkinghub.elsevier.com/retrieve/pii/S0164121223002522
https://linkinghub.elsevier.com/retrieve/pii/S0164121223002522
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://dl.acm.org/doi/10.1145/3363824
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3368089.3409719
https://dl.acm.org/doi/10.1145/3368089.3409719
https://dl.acm.org/doi/10.1145/3368089.3409719

Page 26 of 28

I. P. A. Dharmaadi et al.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

ware Quality Journal, pp. 1439-1465, (2023). https://doi.
org/10.1007/s11219-023-09645- 1. https://link.springer.com/10.
1007/s11219-023-09645-1

Golmohammadi, A., Zhang, M., Arcuri, A.: Testing RESTful
APIs: a survey. In: ACM Transactions on Software Engineer-
ing and Methodology, pp. 27:1-27:41, (2023). https://doi.org/10.
1145/3617175. https://dl.acm.org/doi/10.1145/3617175

Haas, A., et al.: Bringing the web up to speed with WebAssem-
bly. en. In: Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion. Barcelona Spain: ACM, pp. 185-200, (2017). https://doi.
org/10.1145/3062341.3062363. https://dl.acm.org/doi/10.1145/
3062341.3062363

Hazimeh, A., Herrera, A., Payer, M.: Magma: a ground-
truth fuzzing benchmark. en. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems, pp. 1-29,
(2020). https://doi.org/10.1145/3428334. https://dl.acm.org/doi/
10.1145/3428334

Herrera, A., et al.: Seed selection for successful fuzzing. en. In:
Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. Virtual Denmark: ACM,
pp. 230-243, (2021).https://doi.org/10.1145/3460319.3464795.
https://dl.acm.org/doi/10.1145/3460319.3464795

Horvith, E,, et al.: Code coverage differences of Java bytecode and
source code instrumentation tools. en. In: Software Quality Jour-
nal, pp. 79-123, (2019). https://doi.org/10.1007/s11219-017-
9389-z. http://link.springer.com/10.1007/s11219-017-9389-z
Indrasiri, K., Siriwardena, P.: Microservices for the enterprise:
designing, developing, and deploying. Apress, (2018). https:/
books.google.nl/books?id=Qfd5SDwWAAQBAJ

Jin, Brenda, Sahni, Saurabh: and Amir Shevat. Building APIs that
developers love. O’Reilly Media Inc, Designing Web APIs (2018)
Kim, M., et al.: Enhancing REST API Testing with NLP
Techniques. en. In: Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis.
Seattle WA USA: ACM, pp. 1232-1243, (2023). https://doi.
org/10.1145/3597926.3598131. https://dl.acm.org/doi/10.1145/
3597926.3598131

Klooster, T., etal.: Continuous fuzzing: a study of the effectiveness
and scalability of fuzzing in CI/CD pipelines. In: 2023 IEEE/ACM
International Workshop on Search-Based and Fuzz Testing
(SBFT). pp. 25-32, (2023). https://doi.org/10.1109/SBFT59156.
2023.00015. https://ieeexplore.ieee.org/document/ 10190386
Korel, B.: Automated software test data generation. en. In:
IEEE Transactions on Software Engineering, pp. 870-879,
(1990). https://doi.org/10.1109/32.57624. http://ieeexplore.ieee.
org/document/57624/

Landscape of API Traffic. (2021). https://blog.cloudflare.com/
landscape-of-api-traffic

Laranjeiro, N., Agnelo, J., Bernardino, J.: A black box tool for
robustness testing of REST Services. In: IEEE Access. Confer-
ence Name: IEEE Access, pp. 24738-24754, (2021). https://doi.
org/10.1109/ACCESS.2021.3056505

Icamtuf. Technical whitepaper for afl-fuzz. https://Icamtuf.
coredump.cx/afl/technical_details.txt

Lei, Z., et al.: Bootstrapping Automated Testing for RESTful Web
Services. en. In: IEEE Transactions on Software Engineering, pp.
1561-1579, (2023). https://doi.org/10.1109/TSE.2022.3182663.
https://ieeexplore.ieee.org/document/9796038/

Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. en. In:
Cybersecurity, p. 6, (2018). https://doi.org/10.1186/s42400-
018-0002-y. https://cybersecurity.springeropen.com/articles/10.
1186/542400-018-0002-y

Li, S., et al.: Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review. en.
In: Information and Software Technology, pp. 106449, (2021).

@ Springer

56.

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

https://doi.org/10.1016/j.infsof.2020.106449. https://linkinghub.
elsevier.com/retrieve/pii/S0950584920301993

Li, X., Xue, Y.: A survey on server-side approaches to securing
web applications. en. In: ACM Computing Surveys, pp. 1-29,
(2014). https://doi.org/10.1145/2541315. https://dl.acm.org/doi/
10.1145/2541315

Liang, H., et al.: Fuzzing: State of the Art. In: IEEE Transactions
on Reliability. Conference Name: IEEE Transactions on Relia-
bility, pp. 1199-1218, (2018). https://doi.org/10.1109/TR.2018.
2834476

libFuzzer. (2016). http://llvm.org/docs/LibFuzzer.html

Lin, J., et al.: foREST: A Tree-based Black-box Fuzzing
Approach for RESTful APIs. en. In: 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE). Flo-
rence, Italy: IEEE, pp. 695-705, (2023). https://doi.org/10.1109/
ISSRES59848.2023.00023. https://ieeexplore.ieee.org/document/
10301255/

Liu, Chien-Hung, Chen, Shu-Ling, Huang, Hong-Kai: Auto-
mated Test Input Generation for Testing Representational State
Transfer (REST) Application Programming Interface (API)
using Parameter Fuzzing. en. In: 2023 IEEE 6th Interna-
tional Conference on Knowledge Innovation and Invention
(ICKII). Sapporo, Japan: IEEE, pp. 249-253, (2023). https:/
doi.org/10.1109/ICKII58656.2023.10332662. https://ieeexplore.
ieee.org/document/10332662/

Luong, Minh-Thang, Pham, Hieu, Christopher D. Manning:
Effective Approaches to Attention-based Neural Machine Trans-
lation. (2015). arXiv:1508.04025

Lyu, C., Xu, J., Ji, S.: MINER: A Hybrid Data-Driven Approach
for REST API Fuzzing. In: Proceedings of the 32nd USENIX
Security Symposium. Anaheim, CA, USA: USENIX Associa-
tion, pp. 4517-4534, (2023). https://www.usenix.org/conference/
usenixsecurity23/presentation/lyu

Manes, VIM. etal.: The Art, Science, and Engineering of Fuzzing:
A Survey. en. In: IEEE Transactions on Software Engineering, pp.
2312-2331, (2021). https://doi.org/10.1109/TSE.2019.2946563.
https://ieeexplore.ieee.org/document/8863940/

Marculescu, B., Zhang, M., Arcuri, A.: On the Faults Found in
REST APIs by Automated Test Generation. en. In: ACM Trans-
actions on Software Engineering and Methodology, pp. 143,
(2022). https://doi.org/10.1145/3491038. https://dl.acm.org/doi/
10.1145/3491038

Martin-Lopez, Alberto, Segura, Sergio, Ruiz-Cortés, Antonio:
A Catalogue of Inter-parameter Dependencies in RESTful
Web APIs”. en. In: Service-Oriented Computing. Ed. by Sami
Yangui et al. Series Title: Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, pp. 399414,
(2019). https://doi.org/10.1007/978-3-030-33702-5_31. http:/
link.springer.com/10.1007/978-3-030-33702-5_31
Martin-Lopez, Alberto, Segura, Sergio, Ruiz-Cortés, Antonio.:
Online testing of RESTful APIs: promises and challenges. en.
In: Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering. Singapore Singapore: ACM, pp. 408—
420, (2022). https://doi.org/10.1145/3540250.3549144. https://
dl.acm.org/doi/10.1145/3540250.3549144

Martin-Lopez, Alberto, Segura, Sergio, Ruiz-Cortés, Antonio:
RESTest: automated black-box testing of RESTful web APIs. en.
In: Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. Virtual Denmark: ACM,
pp. 682—685. (2021). https://doi.org/10.1145/3460319.3469082.
https://dl.acm.org/doi/10.1145/3460319.3469082

Martin-Lopez, Alberto, Segura, Sergio, Ruiz-Cortés, Antonio.:
RESTest: Black-Box Constraint-Based Testing of RESTful Web
APIs. en. In: Service-Oriented Computing. Ed. by Eleanna
Kafeza et al. Series Title: Lecture Notes in Computer Sci-

https://doi.org/10.1007/s11219-023-09645-1
https://doi.org/10.1007/s11219-023-09645-1
https://link.springer.com/10.1007/s11219-023-09645-1
https://link.springer.com/10.1007/s11219-023-09645-1
https://doi.org/10.1145/3617175
https://doi.org/10.1145/3617175
https://dl.acm.org/doi/10.1145/3617175
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://dl.acm.org/doi/10.1145/3062341.3062363
https://dl.acm.org/doi/10.1145/3062341.3062363
https://doi.org/10.1145/3428334
https://dl.acm.org/doi/10.1145/3428334
https://dl.acm.org/doi/10.1145/3428334
https://doi.org/10.1145/3460319.3464795
https://dl.acm.org/doi/10.1145/3460319.3464795
https://doi.org/10.1007/s11219-017-9389-z
https://doi.org/10.1007/s11219-017-9389-z
http://link.springer.com/10.1007/s11219-017-9389-z
https://books.google.nl/books?id=Qfd5DwAAQBAJ
https://books.google.nl/books?id=Qfd5DwAAQBAJ
https://doi.org/10.1145/3597926.3598131
https://doi.org/10.1145/3597926.3598131
https://dl.acm.org/doi/10.1145/3597926.3598131
https://dl.acm.org/doi/10.1145/3597926.3598131
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/SBFT59156.2023.00015
https://ieeexplore.ieee.org/document/10190386
https://doi.org/10.1109/32.57624
http://ieeexplore.ieee.org/document/57624/
http://ieeexplore.ieee.org/document/57624/
https://blog.cloudflare.com/landscape-of-api-traffic
https://blog.cloudflare.com/landscape-of-api-traffic
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1109/ACCESS.2021.3056505
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1109/TSE.2022.3182663
https://ieeexplore.ieee.org/document/9796038/
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://cybersecurity.springeropen.com/articles/10.1186/s42400-018-0002-y
https://cybersecurity.springeropen.com/articles/10.1186/s42400-018-0002-y
https://doi.org/10.1016/j.infsof.2020.106449
https://linkinghub.elsevier.com/retrieve/pii/S0950584920301993
https://linkinghub.elsevier.com/retrieve/pii/S0950584920301993
https://doi.org/10.1145/2541315
https://dl.acm.org/doi/10.1145/2541315
https://dl.acm.org/doi/10.1145/2541315
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/ISSRE59848.2023.00023
https://doi.org/10.1109/ISSRE59848.2023.00023
https://ieeexplore.ieee.org/document/10301255/
https://ieeexplore.ieee.org/document/10301255/
https://doi.org/10.1109/ICKII58656.2023.10332662
https://doi.org/10.1109/ICKII58656.2023.10332662
https://ieeexplore.ieee.org/document/10332662/
https://ieeexplore.ieee.org/document/10332662/
http://arxiv.org/abs/1508.04025
https://www.usenix.org/conference/usenixsecurity23/presentation/lyu
https://www.usenix.org/conference/usenixsecurity23/presentation/lyu
https://doi.org/10.1109/TSE.2019.2946563
https://ieeexplore.ieee.org/document/8863940/
https://doi.org/10.1145/3491038
https://dl.acm.org/doi/10.1145/3491038
https://dl.acm.org/doi/10.1145/3491038
https://doi.org/10.1007/978-3-030-33702-5_31
http://link.springer.com/10.1007/978-3-030-33702-5_31
http://link.springer.com/10.1007/978-3-030-33702-5_31
https://doi.org/10.1145/3540250.3549144
https://dl.acm.org/doi/10.1145/3540250.3549144
https://dl.acm.org/doi/10.1145/3540250.3549144
https://doi.org/10.1145/3460319.3469082
https://dl.acm.org/doi/10.1145/3460319.3469082

Fuzzing Frameworks for Server-side Web Applications: A Survey...

Page270f28 73

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

ence. Cham: Springer International Publishing, pp. 459475,
(2020). https://doi.org/10.1007/978-3-030-65310-1_33. https://
link.springer.com/10.1007/978-3-030-65310-1_33
Martin-Lopez, Alberto, Segura, Sergio, Ruiz-Cortés, Antonio:
Test coverage criteria for RESTful web APIs. en. In: Proceedings
of the 10th ACM SIGSOFT International Workshop on Automat-
ing TEST Case Design, Selection, and Evaluation. Tallinn Esto-
nia: ACM, pp. 15-21, (2019). https://doi.org/10.1145/3340433.
3342822. https://dl.acm.org/doi/10.1145/3340433.3342822
Martin-Lopez, Alberto et al.: Specification and Automated Anal-
ysis of Inter-Parameter Dependencies in Web APIs. In: IEEE
Transactions on Services Computing. Conference Name: IEEE
Transactions on Services Computing, pp. 2342-2355, (2022)
https://doi.org/10.1109/TSC.2021.3050610

Meng, R..et al.: Large Language Model guided Protocol Fuzzing.
en. In: Proceedings of the 31st Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA, USA.
(2024). https://doi.org/10.14722/ndss.2024.24556

Miller, Barton P, Fredriksen, Lars, So, Bryan: An empirical study
of the reliability of UNIX utilities”. In: Communications of the
ACM, pp. 3244, (1990)

Mirabella, A.Giuliano et al.; Deep Learning-Based Prediction of
Test Input Validity for RESTful APIs. en. In: 2021 IEEE/ACM
Third International Workshop on Deep Learning for Testing and
Testing for Deep Learning (DeepTest). Madrid, Spain: IEEE,
pp. 9-16, (2021) https://doi.org/10.1109/DeepTest52559.2021.
00008. https://ieeexplore.ieee.org/document/9476896/

OWASP API Security Project — OWASP Foundation. https://
owasp.org/ www-project-api-security/

Pan, L.et al.: EDEFuzz: A Web API Fuzzer for Excessive Data
Exposures. In: Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering. ICSE ’24. New
York, NY, USA: Association for Computing Machinery, pp. 1-
12, (2024). https://doi.org/10.1145/3597503.3608133. https://dl.
acm.org/doi/10.1145/3597503.3608133

Peng, C., Gao, Y., Yang, P.: Automated Server Testing: an
Industrial Experience Report. en. In: 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME).
Limassol, Cyprus: IEEE, pp. 519-522, (2022). https://doi.org/
10.1109/ICSME55016.2022.00071. https://ieeexplore.ieee.org/
document/9977442/

Pezze, M., Young, M.: Software Testing and analysis: process,
principles, and techniques. Wiley India Pvt, Limited (2008)
Pham, Van-Thuan, Bohme, Marcel, Roychoudhury, Abhik.:
AFLNET: a greybox fuzzer for network protocols. In: 2020 IEEE
13th International Conference on Software Testing, Validation
and Verification (ICST), pp. 460-465, (2020). https://doi.org/10.
1109/1CST46399.2020.00062

Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs:
services for a changing world. O’Reilly Media, (2013). https://
books.google.nl/books?id=ZXDGAAAAQBAIJ

Orpheas van Rooij et al.: webFuzz: Grey-Box Fuzzing for Web
Application. en. In: Computer Security — ESORICS 2021. Ed.
byElisa Bertino, Haya Shulman, and MichaelWaidner. Lecture
Notes in Computer Science.Cham: Springer International Pub-
lishing, pp. 152-172, (2021). https://doi.org/10.1007/978-3-030-
88418-5_8

Serrano, Nicolds, Hernantes, Josune, Gallardo, Gorka: Mobile
Web Apps. In: IEEE Software. Conference Name: IEEE Soft-
ware, pp. 22-27, (2013). https://doi.org/10.1109/MS.2013.111
Trickel, E., etal.: Toss a Fault to Your Witcher: Applying Grey-box
Coverage-Guided Mutational Fuzzing to Detect SQL and Com-
mand Injection Vulnerabilities. en. In: 2023 IEEE Symposium on
Security and Privacy (SP). 44. SAN FRANCISCO: IEEE Com-
puter Society, pp. 2658-2675, (2023). https://doi.org/10.1109/
SP46215.2023.00007

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Tripp, O., et al.: TAJ: Effective Taint Analysis of Web Appli-
cations. en. In: Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation.
Dublin, Ireland: Association for Computing Machinery, pp. 87—
97, (2009). https://doi.org/10.1145/1542476.1542486

Tsai, Chung-Hsuan, Tsai, Shi-Chun, Huang, Shih-Kun: REST
API Fuzzing by Coverage Level Guided Blackbox Testing. In:
2021 IEEE 2l1st International Conference on Software Qual-
ity, Reliability and Security (QRS). IEEE, pp. 291-300, (2021).
https://doi.org/10.1109/QRS54544.2021.00040

Viglianisi, E., Dallago, M., Ceccato, M.: RESTTESTGEN: Auto-
mated Black-Box Testing of RESTful APIs. In: 2020 IEEE 13th
International Conference on Software Testing, Validation and Ver-
ification (ICST), pp. 142-152, (2020). https://doi.org/10.1109/
1CST46399.2020.00024

Vulnerability Scanning Tools — OWASP Foundation. en. https://
owasp.org/www-community/ Vulnerability_Scanning_Tools
Wai, Khaing Hsu et al.: Code Modification Problems for Mul-
timedia Use in JavaScript-Based Web Client Programming. en.
In: Complex, Intelligent and Software Intensive Systems. Ed. by
Leonard Barolli. Series Title: Lecture Notes in Networks and
Systems. Cham: Springer International Publishing, pp. 548-556,
(2022). https://doi.org/10.1007/978-3-031-08812-4_53. https://
link.springer.com/10.1007/978-3-031-08812-4_53

Wang, Junjie et al.: Superion: Grammar-Aware Greybox Fuzzing.
en. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). Montreal, QC, Canada: IEEE, pp. 724—
735, (2019). https://doi.org/10.1109/ICSE.2019.00081 . https://
ieeexplore.ieee.org/document/8811923/

Wu, H., et al.: Combinatorial testing of RESTful APIs. en.
In: Proceedings of the 44th International Conference on Soft-
ware Engineering. Pittsburgh Pennsylvania: ACM, pp. 426—
437, (2022). https://doi.org/10.1145/3510003.3510151. https://
dl.acm.org/doi/10.1145/3510003.3510151

Yamamoto, K.: Efficient penetration of API sequences to test
stateful RESTful services. en. In: 2021 IEEE International Con-
ference on Web Services (ICWS). Chicago, IL, USA: IEEE,
pp. 734-740, (2021). https://doi.org/10.1109/ICWS53863.2021.
00101. https://ieeexplore.ieee.org/document/9590435/
Yandrapally, R., et al.: Carving UI Tests to Generate API Tests
and API Specification. en. In: 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). Melbourne,
Australia: IEEE, pp. 1971-1982, (2023). https://doi.org/10.1109/
ICSE48619.2023.00167. https://ieeexplore.ieee.org/document/
10172784/

Yin, Zijing et al.: “Scanner++: Enhanced Vulnerability Detec-
tion of Web Applications with Attack Intent Synchroniza-
tion”. en. In: ACM Transactions on Software Engineering and
Methodology 32(1)(2023), pp.1-30. ISSN: 1049-331X, 1557-
7392. https://doi.org/10.1145/3517036. https://dl.acm.org/doi/
10.1145/3517036 (visited on 09/20/2024)

Yun, J., et al.: Fuzzing of Embedded Systems: a survey’. en. In:
ACM Computing Surveys, pp. 1-33, (2023). https://doi.org/10.
1145/3538644. https://dl.acm.org/doi/10.1145/3538644
Zalewski, M.: American Fuzzy Lop. (2014). http://lcamtuf.
coredump.cx/afl

Zhang, H., Dong, W., Jiang, L.: Zokfuzz: Detection of Web
Vulnerabilities via Fuzzing. In: 2022 2nd International Con-
ference on Consumer Electronics and Computer Engineering
(ICCECE). IEEE, pp. 281-287, (2022). https://doi.org/10.1109/
ICCECES5S4139.2022.9712748

Zhang, J., et al:. A novel neural source code repre-
sentation based on abstract syntax tree. en. In: 2019
IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). Montreal, QC, Canada: IEEE, pp. 783-

@ Springer

https://doi.org/10.1007/978-3-030-65310-1_33
https://link.springer.com/10.1007/978-3-030-65310-1_33
https://link.springer.com/10.1007/978-3-030-65310-1_33
https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1145/3340433.3342822
https://dl.acm.org/doi/10.1145/3340433.3342822
https://doi.org/10.1109/TSC.2021.3050610
https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.1109/DeepTest52559.2021.00008
https://doi.org/10.1109/DeepTest52559.2021.00008
https://ieeexplore.ieee.org/document/9476896/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://doi.org/10.1145/3597503.3608133
https://dl.acm.org/doi/10.1145/3597503.3608133
https://dl.acm.org/doi/10.1145/3597503.3608133
https://doi.org/10.1109/ICSME55016.2022.00071
https://doi.org/10.1109/ICSME55016.2022.00071
https://ieeexplore.ieee.org/document/9977442/
https://ieeexplore.ieee.org/document/9977442/
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://books.google.nl/books?id=ZXDGAAAAQBAJ
https://books.google.nl/books?id=ZXDGAAAAQBAJ
https://doi.org/10.1007/978-3-030-88418-5_8
https://doi.org/10.1007/978-3-030-88418-5_8
https://doi.org/10.1109/MS.2013.111
https://doi.org/10.1109/SP46215.2023.00007
https://doi.org/10.1109/SP46215.2023.00007
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1109/QRS54544.2021.00040
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1109/ICST46399.2020.00024
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://doi.org/10.1007/978-3-031-08812-4_53
https://link.springer.com/10.1007/978-3-031-08812-4_53
https://link.springer.com/10.1007/978-3-031-08812-4_53
https://doi.org/10.1109/ICSE.2019.00081
https://ieeexplore.ieee.org/document/8811923/
https://ieeexplore.ieee.org/document/8811923/
https://doi.org/10.1145/3510003.3510151
https://dl.acm.org/doi/10.1145/3510003.3510151
https://dl.acm.org/doi/10.1145/3510003.3510151
https://doi.org/10.1109/ICWS53863.2021.00101
https://doi.org/10.1109/ICWS53863.2021.00101
https://ieeexplore.ieee.org/document/9590435/
https://doi.org/10.1109/ICSE48619.2023.00167
https://doi.org/10.1109/ICSE48619.2023.00167
https://ieeexplore.ieee.org/document/10172784/
https://ieeexplore.ieee.org/document/10172784/
https://doi.org/10.1145/3517036
https://dl.acm.org/doi/10.1145/3517036
https://dl.acm.org/doi/10.1145/3517036
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://dl.acm.org/doi/10.1145/3538644
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://doi.org/10.1109/ICCECE54139.2022.9712748
https://doi.org/10.1109/ICCECE54139.2022.9712748

Page 28 of 28

I. P. A. Dharmaadi et al.

97.

98.

99.

100.

794, (2019). https://doi.org/10.1109/ICSE.2019.00086. https://
ieeexplore.ieee.org/document/8812062/

Zhang, M., Arcuri, A.: Adaptive hypermutation for search-based
system test generation: a study on REST APIs with EvoMaster.
en. In: ACM Transactions on Software Engineering and Method-
ology, pp. 1-52, (2022). https://doi.org/10.1145/3464940. https://
dl.acm.org/doi/10.1145/3464940

Zhang, M., Arcuri, A.: Open Problems in Fuzzing RESTful APIs:
a comparison of tools. en. In: ACM Transactions on Software
Engineering and Methodology, pp. 1-45, (2023). https://doi.org/
10.1145/3597205

Zhang, M., Belhadi, A., Arcuri, A. JavaScript SBST Heuristics
to Enable Effective Fuzzing of Node]S Web APIs. In: ACM
Transactions on Software Engineering and Methodology, pp.
139:1-139:29, (2023). https://doi.org/10.1145/3593801. https://
dl.acm.org/doi/10.1145/3593801

Zhang, M., Marculescu, B., Arcuri, A.: Resource-based test case
generation for RESTful web services. en. In: Proceedings of
the Genetic and Evolutionary Computation Conference. Prague
Czech Republic: ACM, pp. 1426-1434, (2019). https://doi.
org/10.1145/3321707.3321815. https://dl.acm.org/doi/10.1145/
3321707.3321815

@ Springer

101.

102.

103.

Zhang, M., et al.: White-Box Fuzzing RPC-Based APIs with
EvoMaster: An Industrial Case Study. In: ACM Transactions
on Software Engineering and Methodology, pp. 122:1-122:38,
(2023). https://doi.org/10.1145/3585009

Zhao, J et al.: Cefuzz: An Directed Fuzzing Framework for
PHP RCE Vulnerability. en. In: Electronics, pp. 758, (2022).
https://doi.org/10.3390/electronics 1 1050758. https://www.mdpi.
com/2079-9292/11/5/758

Zhu, X et al.: Fuzzing: A Survey for Roadmap. en. In: ACM
Computing Surveys, pp. 1-36, (2022). https://doi.org/10.1145/
3512345

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICSE.2019.00086
https://ieeexplore.ieee.org/document/8812062/
https://ieeexplore.ieee.org/document/8812062/
https://doi.org/10.1145/3464940
https://dl.acm.org/doi/10.1145/3464940
https://dl.acm.org/doi/10.1145/3464940
https://doi.org/10.1145/3597205
https://doi.org/10.1145/3597205
https://doi.org/10.1145/3593801
https://dl.acm.org/doi/10.1145/3593801
https://dl.acm.org/doi/10.1145/3593801
https://doi.org/10.1145/3321707.3321815
https://doi.org/10.1145/3321707.3321815
https://dl.acm.org/doi/10.1145/3321707.3321815
https://dl.acm.org/doi/10.1145/3321707.3321815
https://doi.org/10.1145/3585009
https://doi.org/10.3390/electronics11050758
https://www.mdpi.com/2079-9292/11/5/758
https://www.mdpi.com/2079-9292/11/5/758
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345

	Fuzzing frameworks for server-side web applications: a survey
	Abstract
	1 Introduction
	1.1 Research questions
	1.2 Scope, related works, and contributions
	1.2.1 Fuzzer vs vulnerability scanner
	1.2.2 Related works
	1.2.3 Contribution

	2 Background
	2.1 Server-side web application and web API
	2.1.1 HTTP methods and response codes
	2.1.2 Open-API specification

	2.2 Fuzzing
	2.2.1 Mutation-based input generation
	2.2.2 Grammar-based input generation

	3 Survey methodology
	3.1 Searching papers
	3.2 Manual filtering of the collected papers
	3.3 Collection expansion
	3.4 Summary on publications

	4 Web API fuzzing overview
	4.1 Program under test
	4.1.1 Web API fuzzing vs network protocol fuzzing
	4.1.2 Web API fuzzing vs binary fuzzing

	4.2 Methodology
	4.2.1 Crash-driven fuzzing
	4.2.2 Vulnerability-driven fuzzing

	5 Web API fuzzer workflow
	5.1 Request template generation
	5.1.1 Problem: request dependency
	5.1.2 Problem: short request sequence
	5.1.3 Problem: lack of OpenAPI specification
	5.1.4 Problem: specific type inference

	5.2 Template rendering
	5.2.1 Problem: initial valid values
	5.2.2 Problem: semantic value
	5.2.3 Problem: inter-parameter dependency

	5.3 Execution and getting feedback
	5.3.1 Problem: feedback for mutation
	5.3.2 Problem: instrumentation
	5.3.3 Problem: observed vulnerability

	5.4 Mutation
	5.4.1 Problem: fast mutation
	5.4.2 Problem: code region exploration
	5.4.3 Problem: more malicious requests

	5.5 Choosing WUT for experimental evaluation
	5.5.1 Third-party security benchmarks
	5.5.2 Self-developed benchmarks
	5.5.3 Public WUT

	5.6 Summary

	6 Open challenges
	6.1 Less effective source code instrumentation
	6.2 Complexity of handling microservice architecture
	6.3 The difficulty of testing public WUT
	6.4 Lack of corpus diversity
	6.5 Lack of web API fuzzing benchmarks

	7 Potential research directions
	7.1 Fuzzing for web client programming
	7.2 Fuzzing mobile web applications
	7.3 Generative AI for web fuzzing
	7.4 Support for diverse web security vulnerabilities

	8 Threats to validity
	9 Conclusion
	Appendix A OpenAPI Specification Example
	Appendix B Grammar example generated by RESTler atlidakisspsrestlersps2019
	Acknowledgements
	References

