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Abstract—Return-oriented programming (ROP) has become
the dominant form of vulnerability exploitation in both user
and kernel space. Many defenses against ROP exploits exist,
which can significantly raise the bar against attackers. Although
protecting existing code, such as applications and the kernel,
might be possible, taking countermeasures against dynamic code,
i.e., code that is generated only at run-time, is much harder.
Attackers have already started exploiting Just-in-Time (JIT)
engines, available in all modern browsers, to introduce their
(shell)code (either native code or re-usable gadgets) during JIT
compilation, and then taking advantage of it.

Recognizing this immediate threat, browser vendors started
employing defenses for hardening their JIT engines. In this paper,
we show that—no matter the employed defenses—JIT engines are
still exploitable using solely dynamically generated gadgets. We
demonstrate that dynamic ROP payload construction is possible
in two modern web browsers without using any of the available
gadgets contained in the browser binary or linked libraries. First,
we exploit an open source JIT engine (Mozilla Firefox) by feeding
it malicious JavaScript, which once processed generates all re-
quired gadgets for running any shellcode successfully. Second, we
exploit a proprietary JIT engine, the one in the 64-bit Microsoft
Internet Explorer, which employs many undocumented, specially
crafted defenses against JIT exploitation. We manage to bypass
all of them and create the required gadgets for running any
shellcode successfully. All defensive techniques are documented
in this paper to assist other researchers. Furthermore, besides
showing how to construct ROP gadgets on-the-fly, we also show
how to discover them on-the-fly, rendering current randomization
schemes ineffective. Finally, we perform an analysis of the most
important defense currently employed, namely constant blinding,
which shields all three-byte or larger immediate values in the
JIT buffer for hindering the construction of ROP gadgets.
Our analysis suggests that extending constant blinding to all
immediate values (i.e., shielding 1-byte and 2-byte constants)
dramatically decreases the JIT engine’s performance, introducing
up to 80% additional instructions.

I. INTRODUCTION

Web browsers are undoubtedly omnipresent. They are found
on PCs, smartphones, tablets, smart TVs, gaming consoles,
and elsewhere. Most Internet users probably use a browser

every day. Even users that prefer apps, instead of a general
purpose browser, unknowingly interact with browser compo-
nents frequently used by app developers [1]. Their popularity
is probably one of the reasons that they are such an attractive
target for attackers and security researchers alike [2]–[4].

A. Problem Statement

Attacks against browsers continue despite the fact that
compromising binary software using buffer overflows and
control-hijacking attacks is much harder today. Modern op-
erating systems (OSs) include features like stack canaries [5],
non-executable pages [6], and address-space layout ran-
domization (ASLR) [7], which severely hinder exploitation.
Even code-reuse techniques such as return-oriented program-
ming (ROP) [8] are not straightforward, since they require
information-leak bugs to reveal the randomized location of
code [9], [10] or legacy code and libraries that ASLR cannot
randomize.

Recent works on control-flow integrity (CFI) [11], [12],
fine-grained code randomization [13]–[15], and run-time be-
havioral monitoring [16], [17] promise to protect software
from ROP-like attacks, but unfortunately they have been
also shown to be vulnerable to niche attacks [9], [18], [19].
Other approaches that require application source code, such as
modular fine-grained CFI [20] and G-Free [21], offer greater
guarantees again control-flow hijacking attacks and ROP. So
far, there are no documented attacks against these defenses,
so, in principle, they could protect our precious browsers in
the future, even though one cannot make strong predictions.

Unfortunately, even defenses that may be effective for
conventional software are not always so for browsers. Modern
browsers dynamically generate code through just-in-time (JIT)
compilation to accelerate the execution of JavaScript (JS) code
at run time. Although defenses like the ones discussed above
can be efficient in protecting existing code, code generation is
frequently not handled and it is outside their threat model.

Attacks exploiting the JIT engines of browsers are not new.
Figure 1 depicts the evolution of attacks and defenses against
them. Originally, code and data were not separated by the
code-generation engine, so both the generated native code
and the data it was operating on was placed on the same
executable memory pages. It was enough for the attacker to
place shellcode in a JavaScript array and then redirect the
program’s control-flow to his shellcode in memory. Because
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Fig. 1. Evolution of attacks and defenses in browser JIT engines.

ASLR was already in place, attackers created many copies
of the data array, which resulted in one of the JIT buffers
being allocated in a relatively predictable memory location,
where they could transfer control. This technique is commonly
referred to as JIT spraying [22].

JIT spraying attacks were countered by adopting two sim-
ple strategies, which can be deployed independently. First,
JavaScript data and code is separated, placing the first in non-
executable memory pages. Second, the amount of memory
dedicated to generated code is limited (i.e., the JIT buffer is fi-
nite) to prevent the placement of buffers at predictable offsets.
In response, attackers invented new techniques, building ROP
payloads solely with code generated by the JIT engine [23].
Briefly, this is achieved by using four or eight byte constants
within JavaScript code, which are emitted as immediates in
the generated code. The attacker can carefully select these
constants to build small instruction segments, called gadgets,
and link them in ROP fashion.

The most recent countermeasures against JIT exploitation
have been adopted by Internet Explorer’s Chakra engine. First,
it interleaves NOP instructions in random locations in the
generated code to randomize the location of any gadgets.
Second, it applies constant blinding on constant values larger
than two bytes. This means, that a constant value will never
appear in the JIT buffer as is, but as the XOR product of
itself with a random value. Of course, this does not come for
free, but requires emitting two additional machine instructions
for unblinding constants during execution, i.e., to restore the
original value of the constant. These two countermeasures

along with some others, which for brevity we do not discuss
here but in Sec. V, make JIT exploitation significantly harder.

It is crucial to question: are the above defenses sufficient
for preventing browser exploitation through the JIT engine?

B. Our Approach

This paper performs a security analysis of the latest JIT
engines used by Mozilla and Internet Explorer, attempting
to answer the above question. Our findings indicate that in
both cases it is possible to introduce new gadgets within the
browsers, and we can use these gadgets to construct useful
payloads without using any gadgets from the browsers and
their libraries. This means that despite what defenses are
employed to prevent exploitation of the browser, the JIT engine
is still its Achilles heel.

We demonstrate our findings by building ROP payloads in
Mozilla on 32-bit Linux and Internet Explorer (IE) on 64-
bit Microsoft Windows 8. In the first case, we confirm that
separating JavaScript data from code and using finite memory
for JIT buffers is vulnerable to ROP attacks. In the latter,
we first reverse engineer all the JIT-related defenses used by
IE, and then compose a payload that bypasses all imposed
restrictions. To utilize our payloads, we inject vulnerabilities
in the two browsers based on an older Internet Explorer
vulnerability [2], since at the moment of writing there are
no publicly available exploits for the browsers we used. Using
this realistic vulnerability, we show how a determined attacker
can locate the JIT buffer with high accuracy, overcoming
randomization-based defenses. Finally, we propose various
modifications that could severely impede the attacker’s options
when exploiting JIT engines.

This paper makes the following contributions:

• We leverage the JIT engines in two of the most popular
web browsers, Mozilla Firefox and Internet Explorer
(perhaps, the most attacked one), for constructing ROP
gadgets inside the JIT buffer. Using these gadgets we can
successfully change the access permissions and make the
page holding the shellcode executable.

• Contrary to previous attacks that use JIT spraying [22],
we do not place a shellcode in JavaScript data, as
the new JIT engines place all data into non-executable
pages. Instead, we introduce ROP gadgets using more
sophisticated techniques.

• We conducted the first extensive analysis of the undoc-
umented defense mechanisms against the construction of
ROP gadgets in the JIT buffer, employed by the IE JIT
engine, Chakra. Not only did we discover and document
these defense mechanisms to assist other researchers
that want to understand the Chakra engine, but we also
proposed and implemented ways to successfully bypass
them.

• The attacks we introduce in this paper cannot be stopped
using code diversification (e.g., using Librando [24]).
Based on published research [9], we can discover the JIT
buffer even if it is randomized, and progressively discover
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movl 0xc359, 0x6b8(%eax)

c7 80 b8 06 00 00 59 c3

pop %ecx; ret;

addb 0x5b, %al pop %ebp; ret;

83 c4 04      5b 5d c3

Fig. 2. Example of small code sequences (gadgets) that can be chained for
performing computations controlled by an adversary.

the constructed gadgets on-the-fly before launching the
actual attack.

C. Organization

The rest of the paper is organized as follows. In Section II
we present all essential background information required for
understanding this paper. We explain what gadgets and a JIT
compiler are. In Section III we discuss the assumptions we
make for this attack to happen, as well as the setup where this
attack is really important. We demonstrate the attack in two
popular JIT engines, the one incorporated in Mozilla Firefox
and the one incorporated in Internet Explorer (see Sections IV
and V). We then discuss how gadgets are located in Section VI
and possible defenses in Section VII. We present prior work
in Section VIII and conclude in Section IX.

II. BACKGROUND

In this section we discuss some background information.
The reader needs to become familiar with two things: gadgets
and JIT compilers.

A. ROP Gadgets

Simple code injections cannot easily be used in attacks
nowadays as most operating systems and architectures support
non-executable data. Therefore, the only avenue for exploita-
tion is code-reuse. This means that the attacker must take
advantage of existing functionality available in the vulnerable
program to exploit it. A popular technique to do so is return-
oriented programming (ROP). We assume that the attacker has
program control, for example they can control the contents
of a function pointer (or return address which is essentially
equivalent), but they cannot redirect control to the shellcode
(the part that does the actual compromising, like opening a root
shell). Instead, the attacker finds small sequences of useful
code, which usually end with a ret instruction and chains
them together. The ret instruction is important, as the attacker
needs to execute a few of these sequences in a row using a

virtual stack, but we know that ret can be also simulated
using jumps [25], [26].

These small sequences are called gadgets and can be found
anywhere in a program. In fact, in CISC architectures such
as x86, where instructions have variable length, the attacker
can jump in-between two instructions and form a new (over-
lapping) instruction. Gadgets can do small tasks, such as load
a register with a particular value, but if combined correctly
they can perform any computation. In fact, it has been shown
that ROP is Turing Complete [8]. In Figure 2 we depict a few
example gadgets.

B. JIT Compilation

Scripts expressed in high-level languages usually run inside
an interpreter. For example, a browser embeds a JavaScript
interpreter for evaluating and running JavaScript code. This
is significantly slower than executing native code. Since
JavaScript programs have become complex and large, it often
makes sense to try to compile them into native code, at least
the parts that conduct heavy computation. Compiling does not
happen ahead of time, like it happens when programs are
compiled, but just-in-time (JIT), exactly when the JavaScript
interpreter decides that a particular part of code will be
executed repeatedly. The program that compiles a part of
JavaScript into native code is called a JIT compiler.

JIT compilers are found in many applications. In this paper
we use browsers as examples, since they are prime targets for
attackers. Our techniques however, are general and should be
applicable against many JIT architectures.

III. THREAT MODEL

We now define the conditions under which the attack is
possible and our assumptions regarding the attacker’s capa-
bilities. Both are on par with recent advances in attacks and
defenses [9], [11], [16], [18].

A. Active Defenses

We assume that popular defenses, already present in most
popular modern systems, are in effect. Data execution pre-
vention (DEP) [6] is active, preventing the direct injection
and execution of native code into vulnerable applications.
DEP essentially ensures that no page is both writable and
executable, otherwise referred to as preserving W ⊕ X se-
mantics. Address-space layout randomization (ASLR) [7] is
also enabled, ensuring that the main binary image and the
shared libraries used by the vulnerable application are loaded
at a different, randomly selected virtual address every time
it executes. The goal of ASLR is to introduce uncertainty
and turn the target application into a moving target for the
attacker, who can no longer make assumptions on where a
particular library, and consequently a function or code block,
resides within the address space of an application. Stack
smashing protection may also be present in the form of stack
canaries or function cookies [5], as well as security toolkits
like EMET [27].
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Moreover, we assume that the vulnerable software has
been hardened against code-reuse attacks [13], [16], [21]. For
example, we assume that the binary and its libraries have
been compiled with G-free [21], a compiler framework that
produces binaries without gadgets, which enable powerful
code-reuse attacks such as the ones based on return-oriented
programming (ROP) [8]. In other words, composing a ROP
or other type of core-reuse payload [26] for the vulnerable
application using its code alone is hard. Note that such
defenses have been proposed in literature, but have not been
broadly adopted (yet).

Browser-specific defenses against code-reuse attacks using
the code generated by the JIT compiler are also active. For
instance, the JIT engine included in Internet Explorer (IE)
since version 9, codenamed Chakra, includes certain counter-
measures, aiming at countering attacks like the one introduced
in this paper.

We discuss Chakra and how we bypass it later in this paper,
after presenting details on IE’s JIT engine and the attack
itself. Librando [24] also provides many defense schemes and
shares many common defenses with Chakra. We consider the
common defenses offered by these two to be equivalent.

B. Attacker Capabilities

Our assumption is that the attacker is skilled and can
launch complex attacks against the vulnerable application,
such as the ones already demonstrated by researchers and
security analysts [3], [4], [28]. Consequently, the attacker
can bypass stack canaries, EMET, and similar defenses to
alter the vulnerable program’s control flow by controlling an
indirect control-flow instruction. Most importantly, ASLR can
be defeated, either through a memory disclosure bug [29], or
by forcing the vulnerable application to place attacker data
(the generated code by the JavaScript JIT engine in our case)
in predictable locations. The latter is comparable with heap
spraying [30], where the attacker allocates many copies of their
data in an attempt to ensure that one of the copies lands at a
predictable memory address in the vulnerable program’s heap.
While this assumption may appear as overreaching, recent
prominent work [9] has shown that such memory disclosure
attacks are both powerful and feasible, and they can overcome
even highly dynamic randomization schemes [15].

C. Is this attack unstoppable?

The attack presented in this paper mainly targets binaries
hardened with G-free [21]. To this end, we assume that the
only effective defense mechanism enabled in the system is
realized through gadget-free binaries. However, the fact that
we (i) introduce and (ii) discover the gadgets at run-time
automatically nullifies many other protections which are either
based on off-line code analysis (nullified by (i)) or software
diversification (nullified by (ii)). Therefore, all CFI-based
techniques [11], [12] can be bypassed as well, unless the
JITed code is also analyzed and CFI is applied to it. The
latter needs further exploration as the performance penalty
introduced by the analysis might nullify the gain from JIT

c7 80 b8 06 00 

00 59 c3 83 c4

04 5b 5d c3 ...

JavaScript 

program

Native code

Browser Binary

with libraries, 

all compiled with G-free,

no gadgets available

JIT Compiler

Fig. 3. Illustration of the attack presented in this paper. A browser, which
we assume contains no ROP gadgets, is forced to JIT compile a JavaScript
program. The JavaScript is carefully written in a way that, once compiled,
ROP gadgets will manifest in the JIT buffer.

compilation. Randomization schemes [7], [13], [14], [24] can
also be bypassed as we discover the gadgets at run-time.
Finally, there is the category of run-time monitoring tools,
which include ROPecker [17] and kBouncer [16]. ROPecker
needs off-line analysis of the code, which makes it weak
against our attack. The only mitigation technique that can
potentially detect the attack is kBouncer. Even though it has
been shown that kBouncer can be bypassed [31], [32], it
remains unclear if the attack presented here can be expressed
with the particular gadget types that evade the tool. This
requires further research, which we leave as future work.

/.

IV. EXPLOITING MOZILLA FIREFOX

1 pop %ebx ; r e t ;
2 pop %ecx ; r e t ;
3 xor %eax , %eax ; r e t ;
4 mov 0x7d , %a l ; r e t ;
5 xor %edx , %edx ; r e t ;
6 mov 0x7 , %dl ; r e t ;
7 i n t 0x80 ; r e t ;

Listing 1. Required gadgets for calling mprotect in Linux (32-bit).

1 var g1 = 0 ;
2 . . .
3 var g7 = 0 ;
4
5 f o r ( var i =0 ; i <100000; ++ i ) {
6 g1 = 50011 ; \\ pop ebx ; r e t ;
7 g2 = 50009 ; \\ pop ecx ; r e t ;
8 g3 = 12828721; \\ xor eax , eax ; r e t ;
9 g4 = 12811696; \\ mov 0x7d , a l ; r e t ;

10 g5 = 12833329; \\ xor edx , edx ; r e t ;
11 g6 = 12781490; \\ mov 0x7 , d l ; r e t ;
12 g7 = 12812493; \\ i n t 0x80 ; r e t ;
13 }

Listing 2. The JavaScript program which once compiled will produce the
needed gadgets in the JIT buffer.
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In this section we present how we exploit a vulnerable
version of Mozilla Firefox in Linux (32-bit) without using
any of the available gadgets contained in its binary or shared
libraries. For this particular study we use SpiderMonkey,
the JavaScript engine of Mozilla Firefox, which incorporates
IonMonkey, the JIT engine, version 1.85.

Figure 3 shows a high-level overview of the attack. Briefly,
the steps required to launch this attack are:

1) The browser renders a malicious web page.
2) JavaScript contained in this page, once compiled, pro-

duces a series of gadgets in the JIT buffer.
3) A memory-disclosure bug reveals the locations of the

gadgets [9].
4) A ROP chain is built with the just constructed gadgets

and control is transferred to it.
5) The ROP chain calls VirtualProtect (or

mprotect, depending on the platform) for making a
data page (where the shellcode is stored) executable.

6) Control is transferred to the shellcode and the browser
is compromised.

A. Preparation

The goal is to force the vulnerable web browser to load a
JavaScript program, which, once JIT-compiled, will produce a
series of gadgets that will eventually call mprotect making a
data page hosting a shellcode executable. The gadgets needed
for this purpose are presented in Listing 1. We must control
four registers to invoke mprotect. To do so, we first store
0xb, the system call number of mprotect, in %eax. We
then store the address of the page we want to change the
permission of, in %ebx. The length of the region is stored in
%ecx. Lastly, the desired access rights, in our case 0x7 for
read, write and execute, are stored in %edx. To accomplish
this we need a ROP chain which will load the four registers
with the required values and then a gadget which will call
mprotect. In Linux for x86 architectures, system calls are
performed by using the int 0x80 instruction.

Loading a register with the required value can be done in
two ways. The first is to place the desired value on the stack
and use pop with the register name, and the second is to use
a mov-like command to copy the value to the register. As we
will show later in this section, the gadgets are constructed
via the emitted code from JITed JavaScript. This approach
significantly constrains us in the construction of opcodes for
mov-based gadgets with large values. Therefore we used the
stack and the pop instruction when storing a large value to a
register, and a mov instruction when loading a register with
a small value. In the second case, where a mov is used, it
affects only part of the register and therefore we need to zero
the register before moving the value, which we do by using
an xor gadget.

Based on the above, the ROP chain for calling mprotect
(see Listing 1) includes seven gadgets which work as follows.
The first two gadgets (lines 1 and 2) are two pop gadgets
for storing the page address and region length in %ebx and
%ecx respectively. The following two gadgets (lines 3 and 4)

Encapsulated Gadget

xor eax, eax; ret;

g3 = 12828721;

JavaScript

JIT Compiler
Asm movl $0xc3c031,0x6c8(%eax)

Hex 06 c8 80 c7 c3 c0 31 00

Fig. 4. JavaScript snippet which once compiled a particular assembly
instruction sequence manifests on memory. This sequence can later be used
in a ROP chain for exploiting the browser.

are zeroing %eax and copying the value of 0x7d (the system
call number of mprotect) to it, and the next two (lines 5
and 6) copy the value 0x7, for enabling permissions to read,
write, and execute a page, to %edx. Finally, the last gadget
(line 7) calls mprotect.

B. Exploit Implementation

Now that we have presented the required gadgets for exe-
cuting a shellcode, we will discuss how we create them in a
gadget-free environment. Recall that we assume that the binary
and all shared libraries contain no gadgets. This means that
none of the gadgets belonging to the ROP chain of Listing 1
can be located in existing code, even if a sophisticated gad-
get finder [33] is employed. Notice also that typically ROP
exploitation needs some form of memory disclosure because
of available defenses based on randomization [7], [13], [14].
However, these requirements are orthogonal to the techniques
presented in this paper. First, it has been shown that even
fine-grained randomization schemes can be defeated if the
vulnerability allows arbitrarily reading process memory [9],
and second, in our setup the attacker must overcome an
even stronger defense mechanism: a gadget-free environment.
Thus, the attacker needs to first create the gadgets and locate
them inside the JIT buffer before creating the ROP chain and
executing it.

To introduce the ROP chain of Listing 1 in an executable
page, we leverage the browser’s JIT engine. We specially craft
a JavaScript program which triggers the JIT engine and once
compiled the desired gadgets will appear in an executable
page. Accomplishing this requires two things: (i) a way to
trigger the JIT compiler, and (ii) a way to influence the output
of the JIT compiler so that the desired gadgets will be created
in memory. As far as (i) is concerned, we use JavaScript
loops to increase the compute load and therefore trigger the
JIT engine. To accomplish (ii) we use variable initializations
with specially crafted immediate values which encapsulate the
opcodes of the desired gadgets. Once these immediate values
appear in the JIT buffer we can jump on them and execute the
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encapsulated gadget.
Listing 2 shows a JavaScript program, which once executed,

generates the gadgets required to compromise Mozilla Firefox.
To do this, we first declare seven variables (lines 1-3). Each
variable is carefully initialized to host a gadget. The initializa-
tion takes place inside a long loop to trigger the JIT engine.
In Figure 4 we show how we influence the JIT output by
assigning particular immediate values to JavaScript variables.
For example, assigning the value 12728721 to a variable will
introduce the following assembly code once compiled:

movl $0xc3c031 , 0 x6c8(%eax )

In hex this has the value of 0x06c8080c7c3c03100
which includes 0xc3c031, which is a gadget for zeroing
%eax:

xor %eax , %eax ; r e t ;

In the same fashion we can construct all of the gadgets
contained in the ROP chain of Listing 1 and eventually call
mprotect for making the shellcode executable.

V. EXPLOITING INTERNET EXPLORER

1 pop %r8 ; r e t ;
2 pop %r9 ; r e t ;
3 pop %rcx ; r e t ;
4 pop %rdx ; r e t ;
5 pop %rax ; r e t ;

Listing 3. Required gadgets for calling VirtualProtect in Windows
(64-bit).

In this section we present how we exploit a vulnerable
Internet Explorer (IE) in Microsoft Windows (64-bit) without
using any of the available gadgets contained in the binary or
DLLs used by the browser.

A. Why Internet Explorer is different

Version 9 of IE has started employing a JavaScript JIT
engine called Chakra [34]. As IE is proprietary, little is known
about its internals, and in particular how the JIT engine
works. There are several issues that make carrying out an
attack as the one presented in Section IV for IE significantly
harder. First, lack of source code makes understanding how
the JIT engine is triggered, where the JIT buffer is located,
and other related detail important for exploiting the engine,
very difficult. Second, Chakra employs a series of defenses
specifically introduced for preventing the generation of gadgets
in the JIT buffer. Third, we want to exploit the 64 bit version
of IE, which changes things in terms of calling conventions,
as fastcall is used, and the first function arguments are passed
through registers and not through the stack. In the rest of the
section we describe how we overcome these difficulties.

B. Preparation

As before, to exploit IE we must make the page that
holds the shellcode executable. This means that we need
to call VirtualProtect with the appropriate arguments,
and to accomplish this we must use the gadgets that will
be introduced in the JIT buffer, once a properly crafted

JavaScript program is compiled. The calling convention of
VirtualProtect in Windows is the following. The func-
tion takes 4 arguments using the %rcx, %rdx, %r8, and %r9
registers. Therefore, assuming we control the stack, we need
to introduce the gadgets shown in Listing 3. In Listing 3 we
include an additional gadget, which pops %rax. This gadget
is not needed for calling VirtualProtect but for breaking
a defense mechanism employed by Chakra as we will discuss
later.

Apart from the gadgets we need for calling
VirtualProtect, we also need an additional gadget
for adjusting the stack. Usually, the vulnerability is related
to the heap, therefore we need to adjust the real stack to the
fake stack controlled by us, something that we commonly
call stack pivoting. We avoided discussing the stack-pivoting
gadget in Section IV, since in the case of Mozilla this gadget
can be constructed trivially. Constructing the stack-pivoting
in IE is usually based on exchanging a register the attacker
controls with %rsp, so that the stack pointer points to the
attacker’s fake stack. This exchange can be done using xchg,
which unfortunately is 2 bytes long, and with the additional
ret instruction becomes a 3-byte gadget. As we show later
in this section 3-byte gadgets cannot be constructed trivially
(see “Long gadgets” later in this section). For constructing
the stack-pivoting gadget we need an additional requirement:
having control over %al. The reason is discussed later in this
section.

C. Exploit Design Considerations

Similarly to the approach we took in Section IV, we started
with a compute-heavy loop to trigger the JavaScript JIT
compiler and a series of variable initializations, to introduce
the desired gadgets in the JIT buffer once the loop is compiled.
However, IE is very different from Mozilla and such an
approach failed. IE’s JIT engine, Chakra, employs a number
of defenses which makes introducing gadgets in the JIT buffer
through immediate values in the JavaScript source impossible.
To make our attack work we had to reverse engineer Chakra’s
defenses. We will discuss some of these defenses here and
how we were able to circumvent them.

a) Constant Blinding: Any immediate value less than 2
bytes long is never emitted as is in the JIT buffer. Instead, it is
XORed with a random value and then XORed again when it is
actually used. For example, assume the following JavaScript
code:

var g a d g e t = 0 xc35841 ;

Once it is compiled, we would normally expect to see the
following code in the JIT buffer:

mov %rcx , 1000000 c35841h
mov qword ptr [ rax +48h ] , %rcx

This code essentially puts the (immediate) value 0xc35841
in %rcx, which we assume is the register that holds the value
of the JavaScript variable gadget. This reflects the example
we discussed in Figure 4, where an immediate value (in our
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pop r8

add byte [rax], al

jo 000051fd6c0337

mov rcx, 100000000000h

.

.

.

pop rbp

ret

+0

+6

+12

.

.

.

+24

+26

add eax, 5841h

jo 000051fd6c0337

mov rcx, 100000000000h

pop rbp

ret

Overflow

Exception

handling

OF = 1

OF = 0

OF = 0

OF = 0

Fig. 5. JavaScript functions once compiled by Chakra embed a conditional
jump in case the overflow bit is on. If an attacker tries to jump inside the
function arguments, which as immediate values may encapsulate gadgets (see
Figure 4), the overflow bit will be set and thus the flow will follow the
conditional jump (the program will be terminate).

case 0xc35841) encapsulates a hidden gadget (in our case
the gadget pop %r8;ret). This is prevented in Chakra by
never emitting the immediate as is, but instead producing code
would generate the value using the boolean expression XOR:

mov %rcx , 3BF43B1820E7ED7Dh
mov %rdx , 3BF53B182024B53Ch
xor %rcx , %rdx
mov qword ptr [%rax +48h ] , %rcx

Notice, how 0xc35841 is never present in the JITed code,
instead Chakra does the following. First, it places 0xc35841
XORed with a random value to register %rcx, then it places
the random value to %rdx, and finally it XORs %rcx and
%rdx, to generate the initial immediate value. As the value
never appears in the JIT buffer as is, our encapsulated gadget
is useless. This means that only gadgets with opcodes of 2-
byte length can be constructed in the fashion we described
in Section IV. All other gadgets must be constructed using a
different technique.

b) Long Gadgets: Since gadgets longer than 2 bytes
cannot be encapsulated in immediate values, the gadget must
be broken into two parts: the pop part which loads the register
with the desired value and the ret part (1 byte). Breaking
the gadget in two means that we are emitting the first part
encapsulated in an immediate and we expect that the flow—
if it starts executing the gadget—reaches a ret instruction.
A possible avenue is a JavaScript function, which, if called
with the right arguments, can emit immediate values that
encapsulate gadgets of maximum 2-byte length in the JIT
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ret
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Fig. 6. The stack during the attack against IE.

buffer and can eventually reach a ret instruction, since the
function will return. However, such an approach is far from
trivial.

Consider for example the following JavaScript code:

f u n c t i o n f ( add r ) {
re turn add r + 0 x5841 ;

}
f ( 0 ) ;

We show the compiled version of this code in Figure 5.
First, note that the immediate value (0x5841) which holds
an encapsulated gadget is added to %eax. Initially, this seems
promising, since by jumping two bytes further we can start
executing from the immediate value 0x5841 which trans-
lates to pop %r8 (one of the critical gadgets for calling
VirtualProtect). We show how the code looks like if
we start executing from two bytes further in Figure 5. Then,
note that the addition of:

add %eax , 5841 h

has been replaced with:
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pop %r8
add byte [%rax ] , %a l

The important part is that Chakra has placed a conditional
jump which is followed if the overflow bit is set:

jo 000051 fd6c0037

Notice, that the addition following the pop instruction sets the
overflow bit and thus the flow follows the conditional jump
which executes an access violation handler. To overcome this
we need to achieve two things:
• Make sure that the code between the partially emitted

gadget (the pop-part) does not alter the exploit’s logic
(i.e., does not modify any of the registers from Listing 3).

• Somehow unset the overflow bit before the conditional
jump.

In one special case, for constructing the stack-pivoting
gadget (which is a 3-byte gadget), it is sufficient to control
%rax (specifically guarantee that its low part, %al, has a zero
value), and thus avoid raising the overflow flag. This is why
we need to control %rax for exploiting IE, as we described
in the beginning of this section.

c) Code Diversification: Chakra adds another diversifi-
cation layer in the JIT buffer by emitting a random number of
nop instructions. These instructions perform no useful com-
putation, however they change the layout of the JIT buffer, and
therefore, all important gadgets have a different location every
time they are generated. This particular technique, inserting
random nop instructions, has been also used for diversifying
the Linux kernel layout [35]. Software diversification [36] has
been a promising defense mechanism against exploitation, and
we have seen it applied with many different strategies [7], [13],
[14], as well as used for preventing the attacks we discuss in
this paper [24]. Unfortunately, recently we have seen at least
two sophisticated techniques [9], [10], that can bypass fine-
grained randomization methods by exploiting information-leak
bugs. Our work here is about generating the gadgets in a
heavily defended environment, such as Chakra, and not on
techniques for discovering the process layout. Recall that with
the wide adoption of ASLR all exploits need at least one
information-leak bug for discovering the position of the needed
gadgets. The amount of information leakage depends of course
on the nature of the vulnerability.

D. Exploit Implementation

1 f u n c t i o n r8 ( add r ) {
2 re turn add r + 0 x5841 ;
3 }
4
5 f u n c t i o n r9 ( add r ) {
6 re turn add r + 0 x5941 ;
7 }
8
9 f u n c t i o n e m i t g a d g e t s ( ) {

10 f o r ( i = 0 ; i < 0 xc35841 ; i ++) {
11 r a x = 0 xc358 ;
12 r c x = 0 xc359 ;
13 rdx = 0 xc35a ;
14 r8 ( 0 ) ;
15 r9 ( 0 ) ;

16 }
17 re turn 0 ;
18 }
19
20 e m i t g a d g e t s ( ) ;

Listing 4. The JavaScript program which once compiled will produce the
needed gadgets in the JIT buffer of IE.

Now that we have presented the defenses employed by
Chakra, we will discuss how we introduce the needed gad-
gets in the JIT buffer for running the exploit. As already
mentioned we need to create four gadgets for loading %rcx,
%rdx, %r8, and %r9, with the correct values for calling
VirtualProtect (see Listing 3). Two of the four gadgets
(the ones for %rcx an %rdx) are only 2 bytes in length and
thus they can be created with the techniques we analyzed in
Section IV (see lines 12 and 13 in Listing 4). The challenging
part is to create the other two for loading %r8 and %r9, which
are longer than 2 bytes.

These gadgets are emitted in the JIT buffer using JavaScript
functions. Observe lines 1–7 in Listing 4. We implemented two
JavaScript functions, r8() and r9(), which simply return
a fixed value added to their single argument input. These
functions, once compiled, produce the following code (for
example r9()):

add %eax , 5941 h
jo 000000 D71F8F0132
mov %rcx , 1000000000000 h
or %rax , %rcx
add %rsp , 30h
pop %rbx
pop %r s i
mov %rsp , %rbp
pop %rbp
r e t

Now, if execution starts from the address of the immediate
value (0x5941), a pop %r9 will be executed and control
flow will eventually reach the ret instruction where the
(compiled) JavaScript function returns. The only problem is
the conditional jump for the overflow bit which will be set.
To overcome this we use an additional gadget which sets %rax
(line 11 in Listing 4). The complete JavaScript source for
introducing all needed gadgets in the JIT buffer is shown in
Listing 4 and the stack, along with the way the individual
gadgets are chained, is depicted in Figure 6.

VI. DISCOVERING THE GADGETS

In Sections IV and V we demonstrated how someone can
introduce ROP gadgets in the JIT buffer of Mozilla Firefox
and IE. However, for a successful attack, the adversary has
to locate the position of each gadget in order to form the
ROP chain, which will eventually compromise the vulnerable
program. In this section we investigate how this can be carried
out successfully. Notice, that we assume that a fine-grained
randomization scheme has been enabled, like Librando [24]
or Chakra.

A. How Information Leaks Work

All randomization schemes have an Achilles’ heel: infor-
mation leaks. An attacker can read the contents of a part of
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memory and infer things about the process layout. Once this
happens, the attacker can launch the actual attack, i.e. form
a ROP chain based on the discovered gadget locations. This
might sound as a complicated process, and many times it is,
but it has been demonstrated that it can be achieved in practice
and it can really give an attacker full control of a vulnerable
process, which is randomized in fine-grain (not just shifted in
memory) [9].

Let us briefly discuss the attack presented in [9], which
compromises a randomized [13] but vulnerable IE. The vul-
nerability of IE is based on a heap overwrite. By arbitrarily
increasing the length of a JavaScript string object, located on
the heap, and by reading the string’s contents, the attacker can
read past the end of the string. Now, the attacker is able to
place another JavaScript object, let’s say object X, next to the
string object whose length can be arbitrarily extended using the
heap overwrite. Essentially, the attacker by reading the string’s
contents, discovers the memory layout of object X. By doing
this, the attacker can discover a code pointer which points to
X’s vtable, i.e., a pointer which points to the .text segment.
Once the attacker knows the address of a code pointer, they can
write a large value to the string’s length (232) and transform
the heap overwrite to a generic DiscloseByte interface.
So, the attacker can start disclosing memory of the .text
segment, since they already have a pointer there. By further
disclosing code, and by disassembling it at runtime, following
jumps and calls, the attacker eventually discovers the entire
process layout. At this point, the attacker can use a ROP
compiler [33], discover gadgets, and use them to launch the
attack.

B. Leaking the JIT Buffer

As we have just described above, it is possible to transform
a heap overwrite to a powerful memory disclosure interface.
More details on how an actual exploit works can be found
here [3]. It is essential to understand that leaking the first
code pointer is very important. In our case, we assume that
the code segment has no useful gadgets, therefore leaking a
pointer in text is of no use to us. Instead, we need to leak
a pointer inside the JIT buffer. Once we do this, then the
attack proceeds in the same fashion, but instead of revealing
the code segment, we reveal the JIT buffer which contains the
artificially constructed gadgets. Unfortunately, the particular
version of IE which has the information leak bug contains
no JIT engine (Chakra was introduced later) therefore we did
not try to port the particular exploit [9] using our technique.
However, it is hard to give assurances that new versions of IE,
the ones incorporating Chakra, will not eventually suffer from
such type of bugs.

Nevertheless, we provide an exploit, which is based on an
information leakage vulnerability that constructs a memory
disclosure interface in Mozilla Firefox. This memory dis-
closure interface eventually provides a code pointer which
points inside the JIT buffer. The needed code is presented
in Listing 5. Lines 1 through 3 create an empty JavaScript
Object O and later fill it by creating two properties, O.g1

Pointer to 

JIT Buffer

JIT Code

+0
.

+10

… data …
.

0xf7737200

Address 0xf7737200

Memory layout of Object O

+0
.

+10

+14

+18

+1c

+20

+24

… data …
.

0xc358

0xffffff81

0xc359

0xffffff81

0xf77400e0

0xffffff87

Memory layout of Object foo

+0
.

+78

… data …
.

Address of foo ( )

Value

Type of

Address of foo Object

Value

Type of

Type of

Fig. 7. The memory layout of Object O and Object foo, along with
the necessary steps for locating a (code) pointer inside the JIT buffer. Once
an address of the JIT buffer is known, all ROP gadgets can be discovered and
the attacker can build the needed ROP chain for exploiting the browser.

and O.g2. Line 4 creates a simple function foo. In Line
5 function foo is assigned to a property of O named
func.

Now, we have to discover the memory layout of Object
O in order to find a way to the JIT buffer. Figure 6 shows
the layout of Object O and how each property is aligned
in memory. The simple arithmetic values are stored directly
inside the object followed by a value showing their type
(0xffffff81). The function pointer func(+20) points to
the location of the function object. For discovering the location
of the JIT buffer, we can follow the pointer and therefore
land inside Object foo. At a specific offset from the start
of the object there is a pointer that points to another data
address inside the object. To that address and at a specific
offset, in this example +78, there is a pointer that finally points
to the JIT buffer. Therefore, by following three pointers, we
have managed to disclosure an address inside the JIT buffer.
More precisely the final disclosed (code) pointer is the starting
address of function foo. Once an address inside the JIT
buffer is revealed, the rest of the gadgets can be easily located
by searching in the rest of the JIT buffer. Recall that we have
constructed the gadgets and, therefore, we know in advance
for what we are searching for inside the JIT buffer.

Now it is possible to combine the exploit we described in
Section IV and the JIT-disclosing technique presented in this
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section in order to create a fully working exploit. The exploit
creates all needed ROP gadgets in the JIT buffer, it locates
them one by one using an information-leakage vulnerability,
it builds the ROP chain, which once executed it makes a page
hosting the shellcode executable, and, finally, compromises the
browser.

1 O = new O b j e c t ( ) ;
2 O.g1 = 0 xc358 ;
3 O.g2 = 0 xc359 ;
4 f u n c t i o n foo ( x ) { r e t u r n 0 x5841 ; }
5 O.func = foo ;

Listing 5. JavaScript code that generates a Object which memory layout is
described in Figure 7.

VII. DEFENSES

In this section we discuss defenses. We first discuss existing
defenses and their applicability and later we propose new
countermeasures based on our experience from building the
attacks presented in this paper.

A. Existing Defenses

So far, there are two ways to defend against the attacks
we described: (i) preventing the construction of gadgets using
techniques such as constant blinding (see Section V), and (ii)
diversifying the JIT buffer so that the created gadgets cannot
be located. Both these strategies are used in IE’s JIT engine
(Chakra) and Librando [24]. We have serious concerns that
these strategies may not actually constrain sophisticated and
determined attackers.

As far as strategy (i) is concerned, we demonstrated its
weaknesses by realizing an actual attack on Chakra which
bypasses constant blinding by constructing gadgets in short
immediate values of 1 and 2 byte. One could argue that
by applying constant blinding in all immediate values, no
matter the size, could, in theory, stop the attack. This is
correct, however, enforcing constant blinding in all immediate
values does not come for free. We perform our evaluation
using the SunSpider benchmarks suite. We log all the JIT
instructions that were actually executed in each test. We count
how many instructions involve an immediate value (of 1
or 2 bytes) and the respectively required CPU cycles. We
extract this information from Intel’s manual, by matching
instructions and corresponding cycles. Essentially, there are
three families of instructions that may involve an immedi-
ate value, the distribution of which we depict in Figure 9.
Note that in all tests the instructions involving an immediate
value comprise a significant percentage, ranging between 18–
52% of all executed instructions. Therefore applying constant
blinding to all immediate values is quite costly, introducing
an estimated overhead of 15% to 80%, as shown in Figure 8.
We assume that the JIT compiler emits (at least) two or six
more instructions for each instruction involving an immedi-
ate value, depending on whether the instruction has one or
two immediates. We match these additional instructions to
corresponding cycles and calculate the overhead as additional
cycles. Notice that this estimation is quite conservative, since

we do not account for additional code that will be executed for
preparing the blinding (i.e., calls to rand(), code analysis,
and so on).

Moreover, strategy (ii) is based on simply hiding the
gadgets. This strategy has been adopted by many proposals
for countering software exploitation. Unfortunately, all these
strategies can be defeated either through a memory disclosure
bug [29], or by forcing the vulnerable application to place
attacker data, that is the generated code by the JavaScript
JIT compiler in our case, in predictable locations. The latter
is comparable with heap spraying [30], where the attacker
allocates many copies of his data in an attempt to ensure that
one of the copies lands at a predictable memory address in
the vulnerable program’s heap. This might sound improbable
but recent work in this field has shown that such memory
disclosure attacks are both powerful and realizable, and they
can bypass even highly dynamic randomization schemes [15].
In fact, in this paper we have demonstrated a similar technique
for leaking the location of the JIT buffer (see Section VI),
and discovering all constructed ROP gadgets, rendering all
randomization schemes ineffective.

One possible direction for mitigating ROP in general, and
thus the attacks presented in this paper, is Control-Flow
Integrity (CFI). [37] This was initially a very promising
technique against code-reuse attacks, which quickly drove
to implementations [11], [12], [16], [17] that support legacy
code and impose negligible overhead. Unfortunately, there are
many concerns about the validity of these approaches [18],
[19], [31], [32], [38], therefore making the applicability
of CFI, especially the coarse-grained version, questionable.
Nevertheless, there are still efforts for applying fine-grained
CFI in dynamic-code generation [20], which is essentially
very similar to JIT compilation, and possibly could be a
practical solution—as long as the overhead is reasonable—for
countering the attacks presented in this paper.

B. Proposed Defenses

Based on our experience while developing the attacks
presented here we propose two defense mechanisms. Both,
require code analysis. Realizing these techniques is beyond the
scope of this paper and we believe further research is needed
for implementing them. Both techniques introduce overhead
which may eventually nullify the gains from JIT compilation.
This is the reason why we believe that the attacks presented
in this paper cannot be easily addressed.

d) JIT Analysis: The most obvious defense mechanism
is to enhance the JIT compiler with the techniques proposed
by G-Free [21] for eliminating all gadgets. This has as a major
advantage that the produced code is safe and gadget-free,
however this does not come for free. The code has to be further
processed for eliminating the gadgets, and the produced native
code will experience overheads compared to the non gadget-
free code. Last but not least, it is unclear if it actually easy
to apply G-Free techniques in code that is generated partially
and on-the-fly.
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TABLE I
OFFSET IMMEDIATE INSTRUCTIONS

Length of offset immediate Ratio

1 byte 43.5%

2 byte 43%

>2 byte 9.5%

e) JavaScript Analysis: As we can observe from the
JavaScript payloads used for attacking Mozilla Firefox and IE
(see Listing 2 and 4), special patterns, such as constant values
that can be interpreted as x86 opcodes, are utilized. Therefore,
source analysis could infer if a JavaScript program is targeting
the JIT engine. However, modern obfuscation techniques can
make such analysis hard.

VIII. RELATED WORK

Software exploitation has evolved over the last decade.
Initially, about a decade ago, a simple buffer overflow could
corrupt the stack, re-write the return address and make it point
to a buffer holding a shellcode, and eventually compromise
the program [39]. Today, many practical mitigations available
in all commodity operating systems make such a technique
infeasible. First, DEP [6] prevents execution of data, making
it impossible to store the shellcode on a data buffer and jump to
it, and, second the stack is protected by canaries, i.e., random
values that are placed near the return address and checked
at run-time for their value [5]. An attacker that overflows a
buffer aiming at re-writing the return address will eventually
re-write the canary, too. Furthermore, there are many academic
proposals for protecting the stack and the return address, as
well as counter for buffer overflows [40]–[42].

Therefore, attackers today can only use existing code from
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the vulnerable program in an unintended behavior [8], [25],
[26], [43], [44]. So far, the most practical defense mechanism
for defeating code-reuse attacks is ASLR [7], which simply
randomizes the process layout in the virtual space, so that
the attacker cannot locate the existing code. Researchers have
managed to bypass ASRL when the entropy is not enough or
using information leaks [45]–[48]. Following the practice of
ASLR, researchers developed more fine-grained randomization
schemes [13], [14], but again they were defeated by sophisti-
cated exploitation techniques based on information leaks [9]
or on brute forcing crash-resistant processes [10].

It seems that the most promising direction for countering
code-reuse attacks is to eliminate the feasibility of code-reuse
itself. This can be done either by either re-writing the bi-
nary [11], [12] to respect its call-graph [37], either monitoring
at run-time [16], [17], or by re-compiling it for eliminating
all code-reuse paths (gadgets) [21]. Although attacks for such
systems have been demonstrated [18], [31], [32], we believe
that the bar for exploiting a binary has been significantly raised
by the community and that attackers have to discover new
avenues for exploitation. One of this, is the one presented in
this paper: exploiting a program in an environment which is
gadget free.

In parallel with this work, Song et al [49] show that
JIT buffers can be exploited through code cache injection
techniques. This is possible if the JIT buffer is both writable
and executable or even temporarily writable at times. This
threat is more realistic if the generated code is multi-threaded,
because the switch between writable and executable leaves a
time window for exploitation. They propose a new dynamic
code generation architecture which utilizes a separate process
and shared memory to prevent such exploits.

IX. CONCLUSION

In this paper we introduced and demonstrated a method
to attack gadget-free binaries. We demonstrated our attack
on Mozilla Firefox and Microsoft Internet Explorer, two of
the most widely used applications. Our starting assumption
was that the binaries and shared libraries contain no gadgets
that can be exploited. Our attack manages to introduce useful
gadgets by utilizing the JIT engine present in both browsers,
but also present in other applications as well. Using the JIT
engine, we can create the required gadgets at run-time, inside
the JIT buffer.

Furthermore, we modified a technique based on already
published work [9] for discovering the gadgets at run-time by
leaking the address of the JIT buffer. Our attack is powerful in
the sense that it allows the execution of any shellcode, since it
can change the access permissions of the data page holding the
shellcode. Our techniques are able to exploit the JIT engine
of IE (Chakra), which incorporates a series of defense mecha-
nisms designed specifically to thwart such attacks. Finally, we
performed an extensive analysis and present details about the
undocumented defensive techniques of Chakra.
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