
MARX: Uncovering Class Hierarchies
in C++ Programs

Andre Pawlowski∗, Moritz Contag∗, Victor van der Veen†, Chris Ouwehand†,
Thorsten Holz∗, Herbert Bos†, Elias Athanasopoulos‡, and Cristiano Giuffrida†

∗ Horst Görtz Institut for IT-Security (HGI)
Ruhr-Universität Bochum, Germany

{andre.pawlowski, moritz.contag, thorsten.holz}@rub.de

† Computer Science Institute
Vrije Universiteit Amsterdam,

{vvdveen, herbertb, giuffrida}@cs.vu.nl,
{chris.ouwehand}@vu.nl

‡ Computer Science Department
University of Cyprus, Cyprus

eliasathan@cs.ucy.ac.cy

Abstract—Reverse engineering of binary executables is a
difficult task which gets more involved by the way compilers
translate high-level concepts used in paradigms such as object-
oriented programming into native code, as it is the case for C++.
Such code is harder to grasp than, e. g., traditional procedural
code, since it is generally more verbose and adds complexity
through features such as polymorphism or inheritance. Hence, a
deep understanding of interactions between instantiated objects,
their corresponding classes, and the connection between classes
would vastly reduce the time it takes an analyst to understand
the application. The growth in complexity in contemporary C++
applications only amplifies the effect.

In this paper, we introduce Marx, an analysis framework
to reconstruct class hierarchies of C++ programs and resolve
virtual callsites. We have evaluated the results on a diverse set
of large, real-world applications. Our experimental results show
that our approach achieves a high precision (93.2% of the hier-
archies reconstructed accurately for Node.js, 88.4% for MySQL
Server) while keeping analysis times practical. Furthermore, we
show that, despite any imprecision in the analysis, the derived
information can be reliably used in classic software security
hardening applications without breaking programs. We showcase
this property for two applications built on top of the output of
our framework: vtable protection and type-safe object reuse. This
demonstrates that, in addition to traditional reverse engineering
applications, Marx can aid in implementing concrete, valuable
tools e. g., in the domain of exploit mitigations.

I. INTRODUCTION

Software exploitation has significantly increased in com-
plexity and sophistication in recent years. Despite many at-
tempts to harden applications, exploitation of vulnerabilities
is still possible, especially for large and complex C/C++
programs, where attackers can leverage a rich environment of
dynamically computed jumps. The targets of these branches
are resolved only at runtime, and therefore they can be influ-
enced for introducing new malicious control flows by taking

advantage of software vulnerabilities. In contrast to C, C++, the
choice for implementing a huge industrial software base [25],
contains an additional source of indirect branches. While C
programs need to resolve the target of a branch when, say, a
function returns or a function pointer is used, C++ programs
also need to support dynamic dispatching of virtual calls.
Since virtual objects support several methods from different
classes in their hierarchy, most compilers implement dynamic
dispatching of virtual calls using indirect branches. In practice,
C++ programs are thus full of indirect calls, and most of these
can be influenced not just by overflow-type vulnerabilities, but
also by temporal bugs (i. e., use-after-free vulnerabilities).

This plethora of indirect calls makes analyzing C++ bina-
ries very important, since many exploits target exclusively C++
programs, but also significantly hard. For instance, according
to a recent study [29], most libraries linked to Firefox contain
almost 7% of indirect calls over direct calls and about 40% of
them are virtual calls. Such indirect control-flow transfers rank
among the greatest challenges for even the most basic analysis
steps, such as the recovery of the control flow graph (CFG) [9],
[24]. Resolving the targets of indirect calls and jumps in
a binary is difficult. At the binary level, we have no way
to directly learn class hierarchy information in the program.
While we know that every virtual function call indexes a
virtual function table (so called vtable), we neither know the
vtables’ exact locations, nor their relationships to each other.
Reverse engineering such code from a given binary executable
is therefore a very challenging task in practice.

Albeit challenging, vtable reconstruction directly from
binaries can be useful in several domains. First, the class
hierarchy helps the analysis of C++ legacy or closed code.
Second, since vtables are commonly abused by exploits, secu-
rity analysts can explore incidents affecting C++ applications
when source code is not available. Finally, many defenses
that harden C++ binaries can leverage the class hierarchy
information for delivering sound protection of programs in the
absence of source code. Current state-of-the-art binary-only
protection approaches use weaker characteristics typical for
C++ applications to protect virtual callsites, such as allowing
all existing classes at a virtual callsite [21], or enforcing that
the pointer to the vtable resides in read-only memory [13].
This stems from a lack of precision and scalability of current
class hierarchy reconstruction approaches [12], [17], [18].

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23096



This means that, if we can successfully recover the class hi-
erarchy from a binary, we can improve state-of-the-art binary-
level defenses that can benefit from such information. For in-
stance, we can ensure that virtual function calls conform to the
class hierarchy, and therefore provide strong guarantees against
attempts to hijack the control flow of the program (so called
vtable hijacking attacks). Another example is to ensure that
objects of different type classes are allocated from different
memory pools to prevent the reuse of memory in a type-unsafe
manner—a common source of use-after-free exploits. For both
these example applications, extracting the class hierarchy of
the binary program is important. Notice that this is only a
set of mitigations that rely on C++ semantics, although an
important one given that prior work argued that C++ binary-
level defenses have trouble stopping control-flow hijacking
attacks due to the lack of class hierarchy information [23].

In this paper, we consider the problem of reconstructing
class relations directly from binaries. Our approach does not
rely on embedded RTTI information (metadata emitted by
the compiler for resolving class information at runtime, often
stripped), does not rely on particular compiler flags, and works
on industrial software. Since reconstructing class relations
is a hard problem by itself and information concerning the
direction of the relation is not available in binaries, we only
focus on reconstructing class hierarchies as a set and ignore
the direction of inheritance. Our system, Marx, can accurately
reconstruct 93.2% of the hierarchies for Node.js and 88.4% of
the hierarchies for MySQL Server. Overall, we have success-
fully applied Marx to more than 80 MiB of binary code to
demonstrate the practicality of our implementation.

Marx is a valuable framework for the reverse engineering
community, however, as we have already mentioned, secu-
rity applications can leverage class relations for protecting
binaries. The information provided by the analysis allows us
to implement stronger binary-level defenses using type-based
invariants. To showcase the practicality of Marx, we develop
two binary-level defenses on top of it. The first application is
a vtable protection system to prevent virtual calls to methods
that do not belong to the class hierarchy and mitigate vtable
hijacking attacks. The second application is a custom heap
allocator to support type-safe object reuse, by placing newly
allocated objects in memory pools based on their type.

Both security applications use the class hierarchy recovered
from a binary. We demonstrate that, even when the extracted
class hierarchy is imperfect, our defenses can improve security
at reasonable performance and without breaking programs. To
compensate for the imprecision of the analysis, our vtable
protection solution treats invariant violations as anomalies and
triggers more heavyweight checks on a slow path (trading
off on performance). Our type-safe object reuse solution, in
turn, can gracefully tolerate type-to-pool mapping mismatches
(trading off on security). In short, we show that it is possible
to build fully conservative binary-level defense solutions on
top of imprecise information, exposing new interesting and
previously unexplored tradeoffs.

Contributions. In summary, the contributions of this paper
are as follows:

1) We design and implement Marx, a framework for
reconstructing class hierarchies directly from binary

executables that do not embed RTTI information,
and are produced with arbitrary compiler flags. Marx
is freely available at https://github.com/RUB-SysSec/
Marx.

2) We evaluate Marx with more than 80 MiB of binary
code and we show that vtables can be reconstructed
from binaries with high precision. As an example,
Marx can accurately reconstruct 93.2% of the hier-
archies for Node.js and 88.4% of the hierarchies for
MySQL Server.

3) We develop two security applications for binaries
based on class hierarchies exported by Marx: vtable
protection and type-safe object reuse. Our applica-
tions show it is possible to tolerate imprecise in-
formation when building sound binary-level defense
solutions by trading off on performance and security.

II. TECHNICAL BACKGROUND

Given that Marx is applied to C++ binaries for extracting
the class hierarchy, some basic knowledge of C++ internals
is required for understanding the mechanics of our analysis.
Therefore, we discuss in this section some fundamental C++
concepts and how they are implemented in modern compilers.

A. Object-oriented Programming

C++ is an object-oriented programming (OOP) language
which compiles to native code. In OOP, classes are data types
used to instantiate concrete objects. On the latter, one can
call functions (also called member functions or methods) as
defined by the class an object was instantiated from. Apart
from functions, classes can also define attributes and hence
couple code (via functions) and data (via attributes) together.

OOP allows classes to inherit functions and attributes from
other classes. This defines a relation. The class providing
functions and attributes to another class is commonly called
the base class in that relation, whereas the class inheriting
these is called the derived class. This concept leads to what is
called a class hierarchy: Every class is related to either zero or
multiple bases as well as zero or multiple derived classes. Class
hierarchies can be depicted as a directed graph in which the
inheritance relation is given by the direction (base or derived
class). If a class inherits from multiple base classes, this is
referred to as multiple inheritance; otherwise, it is called single
inheritance.

Classes may add several modifiers to their functions. One
of the most important throughout this paper is the virtual
modifier. If this modifier is used on a function, a derived
class is free to override said function and provide its own
implementation. This concept is called polymorphism, where
a single function invocation may behave differently, depending
on the context in which it is called. More concretely, the
programmer can call a virtual function on either an object
of the base or any derived classes. Depending on the type
of the object, the appropriate implementation of the function
is called. This, in turn, allows programmers to work on the
most general class and vastly simplify their code. In cases
where the compiler cannot determine statically on which object
the function is to be invoked, the selection of the appropriate
implementation is made at runtime. Furthermore, abstract

2



Fig. 1. Example hierarchy layout shown at a high-level in a) and b) shows its layout in native code. Class C inherits attributes and functions of both class A
and B. Further, class C overrides funcA2 and funcB1 and provides its own implementation, C::funcA2 and C::funcB1.

base classes represent an edge case: They provide several
virtual functions, but no implementation on their own (pure
virtual functions). This forces the deriving class to implement
functions conforming to the declaration the base class provides.

Figure 1 a) depicts an exemplary relation of three classes
A, B, and C. Class C inherits the functions from classes A
and B, i. e., one may call the functions funcA1, funcA2,
funcB1, funcB2 on an object of class C, in addition to
the functions class C provides itself. The same is true for the
attributes; hence, class C allocates space for attributes varA,
varB, and varC. Further, C overrides funcA2 and funcB1,
i. e., it specifies a more fitting implementation for its class.

In order to create an object of a specific class, the operator
new can be used, amongst others. It allocates space for the
object (whose size is mostly determined by its attributes) and
calls a designated initialization function that initializes the
object’s attributes with meaningful values. This function is
called a constructor. Similarly, a destructor releases further
resources the constructor requested previously, and is usually
invoked through the operator delete.

In the following, we explain how the aforementioned
concepts are implemented on the binary level.

B. Virtual Function Tables

On the binary level, polymorphism is implemented with
the help of what is called a virtual function table (vtable for
short). It contains the addresses of all virtual functions a class
provides. Each object of such a class contains a pointer to the
corresponding vtable. In the following, we refer to this pointer
as vtblptr.

In the Itanium C++ ABI [3], two metadata fields in the
vtable are specified: Runtime Type Identification (RTTI) and
Offset-to-Top. The RTTI field holds a pointer to a data structure
in which metadata about the class resides, i. e., the name of
the class and its base classes. Even though this information
is useful for type reconstruction, it may not be available
in compiled binaries. It only has to be included if, e. g.,
dynamic_cast or type_info is used, which requires
precise type information at runtime. The Offset-to-Top field
holds an offset that is required when implementing multiple
inheritance. To this end, it is used to adjust an object pointer,
as discussed in a later section.

C. Virtual Function Dispatch

As opposed to regular functions (which are implemented
using direct calls), virtual function calls require a specific type
of callsite (virtual callsite, or vcall). They handle the selection
of the proper virtual function depending on the object on which
the function is invoked using the object’s vtable.

Consider a virtual callsite invoking funcA2 on an object
of either class A or C. Independent of the class the object
at the callsite is instantiated from, in this case, one merely
has to call whatever function is referenced at offset 0x08 in
the object’s vtable. As seen in Figure 1 b), this offset either
points to A::funcA2 or C::funcA2 and always calls the
correct implementation for the given object. Note that this
offset has to be the same across all related vtables. In this case,
this constraint applies for vtable A and C, as classes A and
C are the only candidates when invoking function funcA2.
This mechanism effectively implements polymorphism at the
binary level. In the following, we will refer to the pointer to
the current object as thisptr.

The compiler emits code that directly implements this
mechanism. At each vcall, the thisptr to the object is also set as
an implicit argument (meaning the argument is not specifically
set in the source code). Depending on the calling convention,
the thisptr is either stored in a specific register or on the stack.
In the Itanium C++ ABI on x86-64, a vcall always has the
following structure:

mov RDI, thisptr

call [vtblptr + x]

The thisptr is stored in the RDI register as the first
argument and the vtblptr is used to select the correct virtual
table. The value x denotes the offset into the selected vtable
in order to branch to the correct function. Note that it may be
zero or omitted if the first function of the vtable is targeted.

D. Multiple Inheritance

In addition to single inheritance, C++ supports multiple
inheritance. This allows a class to have multiple base classes
from which it inherits functions and attributes. In the example
given in Figure 1, class C uses multiple inheritance and derives
from class A and B.

Considering the way virtual calls are dispatched, it becomes
apparent that vtables are inherited as well. Given that the

3



dispatching mechanism targets certain offsets in the vtable,
the order of the functions must be preserved throughout the
hierarchy. Conceptually, for multiple base classes, multiple
vtables have to be inherited.

In the given example, class C has a copy of the vtable of
class A with a modified entry (pointer to function C::funcA2
instead of A::funcA2) and appends pointers to its own
implementations of virtual functions to it. Further, a modified
copy of the vtable of class B is added as a sub-vtable
of class C. In this sub-vtable, only the function entries of
overridden virtual functions have changed. These entries have
been replaced by a pointer to special functions called thunks.
If a class derives from only one base class, both vtables can
be merged without conflicts – the current class simply uses
higher offsets when accessing its part of the vtable. In case
of multiple inheritance, however, sub-vtables have to be used.
When accessing an object of class C as an instance of class
B, the thisptr has to be increased by 0x10. Hence, the layout
matches the one expected by vcalls of class B. Thunks are
used to call back into virtual functions belonging to class C.

In the given example, funcB1 was overwritten by class
C. At the position of the entry of funcB1 in the sub-vtable,
the pointer to the thunk, thunk to C::funcB1, has been
written. When executing this thunk, the thisptr is modified to
point to the beginning of the object C and invokes funcB1 of
class C. This ensures that the function uses the correct offsets
into the object, i. e., the thisptr points to the start of object C.

The Offset-to-Top field of the sub-vtables holds the value
that has to be added to the thisptr to reach the beginning
of the object. In our example, the Offset-to-Top holds the
value -0x10. When the sub-vtable of object C is used, the
thisptr points to offset 0x10 of the object (the vtblptr of
the sub-vtable). When adding the value of the Offset-to-Top
field, the thisptr points to the beginning of object C. More
details on multiple inheritance can be found in the C++ ABI
documentation [3].

E. Object Creation and Destruction

As mentioned in Section II-A, constructors are used for
initializing the memory area previously allocated to hold a
specific object. Additionally to any initialization performed
by the programmer (such as setting default values for object
attributes), the compiler adds statements to set an object’s
vtable pointer(s). In case of inheritance, constructors are called
top-down, i. e., the base class constructor is executed prior to
the constructor of the derived class.

Analogous principles apply to the destructor of a class.
However, destructors are invoked in reverse order (bottom-up,
invoking the most specific destructor first).

III. ANALYSIS APPROACH

Given a binary executable, we aim at extracting the C++
class hierarchies as accurately as possible. To this end, we
extract distinct properties that result from the way a C++
compiler implements the aforementioned high-level concepts
on the binary level. In the following, we describe the design
of our approach that is implemented in a tool called Marx.

Generally speaking, our analysis is divided into two steps:

Fig. 2. Structure of an Itanium C++ ABI vtable. The vtable pointer referenced
in the code points to offset 0, where the table of function pointers starts. The
two metadata fields (RTTI and Offset-to-Top) precede said table.

1) Vtable Extraction. Distinct patterns that are typical
for vtables in the code are searched and information
about the vtables is extracted.

2) Static Analysis. Given that these heuristics might lead
to an overestimation, a static analysis of the code is
conducted which searches for usages of the vtables
found in the previous step.

In the following, we focus on the Itanium C++ ABI [3].
However, we stress that the presented methodology is applica-
ble to other ABIs as well, such as the ARM [6] or the Microsoft
C++ ABI [14].

A. Vtable Extraction

Virtual function tables in a binary are the key element
to our analysis. By extracting usages of vtables, one easily
finds points in the program where objects are either created
(constructors) or destroyed (destructors). This, in turn, yields
valuable information about the relation of different classes.
Hence, one can view vtables as roughly analogous to a certain
class and relation of vtables as corresponding to certain class
hierarchies.

Our analysis applies multiple heuristics in order to locate
vtables in a binary (H-1 to H-6), as we discuss in the
following. A rough, albeit simple, estimate can be used to
restrict the search space to specific sections: As vtables are
fully specified at compile time, they can be placed in read-only
sections (heuristic H-1). Therefore, only those sections that
typically hold vtables, such as .rodata, .data.rel.ro,
and .data.rel.ro.local, are analyzed.

Figure 2 shows the typical structure of an Itanium C++
ABI vtable. A vtable consists of three different parts: the
Offset-to-Top field, the RTTI pointer, and multiple function
entries. Each type has different properties which can be used
to distinguish between them. Also, their order is fixed, which
makes it possible to search for a series of consecutive patterns
in a memory range, e. g., a specific section.

As seen in the figure, the vtblptr references the beginning
of the function entries. Usually, this reference will be used in
a constructor or destructor. However, we note that the other
fields are usually not referenced at all (heuristic H-2).

Offset-to-Top is used to implement multiple inheritance for
objects and encodes the offset from the sub-object to the base
object. It is a mandatory field and always contains 0 if multiple
inheritance is unused. Our approach checks the sanity of this
entry by only allowing values in the range from -0xFFFFFF
to 0xFFFFFF as proposed by Prakash et al. [21]. In addition,

4



the value cannot be a relocation entry and these checks
constitute heuristic H-3.

RTTI holds a pointer to further type information for the
class. Since this field is optional, the entry is either a pointer
or 0. If the entry is, in fact, a pointer to data, it has to point to
non-executable memory (heuristic H-4). Since the vtable can
be part of a shared library, this entry can also be a relocation
entry.

Function entries hold a pointer to the virtual functions the
class provides. Hence, an entry either points to the .text,
.plt, or the .extern section of the binary, or it is a
relocation entry. One of these properties has to be satisfied
such that the analysis deems the function pointer to be valid
(heuristic H-5).

In rare cases, the compiler sets the first few function entries
of the vtable to 0. This can happen for multiple inheritance
constructs inheriting from abstract classes. To cope with these
edge cases, our approach allows the first two function entries
of the vtable to be 0. This number was empirically found to
be sufficient (relaxing heuristic H-6).

Finally, we can determine the beginning of a vtable by
searching three consecutive words in memory that fulfill the
properties outlined above. Further, the length of the vtable can
be estimated by checking the subsequent function entries for
validity.

To sum up, the heuristics we employ are:

H-1 Vtables have to lie in read-only sections.
H-2 In a candidate vtable, only the beginning of the

function entries is referenced from the code.
H-3 Offset-to-Top lies within a well-defined range and it

is no relocation entry.
H-4 RTTI either points into a data section or is 0.
H-5 A function entry points into a code section or is a

relocation entry.
H-6 (relaxing) The first two function entries may be 0.

Note that the heuristics to find these patterns can lead
to an overestimation of extracted vtables. Nevertheless, this
does not impact the subsequent analysis notably since only
existing vtables are referenced in the code (cf. heuristic H-2).
We note that only in rare cases an overestimated vtable can
result in an overestimated hierarchy. On the other hand, only
an underestimation of vtables would lower the precision of the
analysis, which is unlikely for the presented approach.

B. Static Analysis

Now that we obtained a possibly overestimated set of
vtable candidates, the second phase of our approach statically
analyzes their relation based on indicators found in the binary
code. Eventually, it yields distinct sets of vtables that are part
of a class hierarchy. In the following, we discuss the various
indicators the approach uses.

1) Overwrite Analysis: In Section II-E, we discussed how
during object creation, the constructor writes the vtblptr into
the object. Further, when class C inherits from class A, as
depicted in Figure 1, the constructor of class A is executed
before the constructor of class C (top-down approach). This

ensures that the inherited attributes of class A are initialized
before the constructor of class C accesses them. Consequently,
the vtblptr of the base class A is written into the new objects
before the derived constructor writes the vtblptr of class C as
shown in Figure 3. This also holds for multiple inheritance.
In the given example, class C also inherits from class B.
Hence, the constructor of class B is also executed before the
constructor of class C. In this case, however, the vtblptr of
class B is overwritten by the vtblptr to the sub-vtable of class
C.

In contrast, during object deletion, the destructor of class
C is executed before the destructor of class A, i. e., invocation
follows a bottom-up approach. Therefore, the vtblptr of class
C is overwritten by the vtblptr of class A. This also holds in
the case of multiple inheritance for the sub-vtable of class C
and vtblptr of class B, analogously. We can leverage this and
detect the dependency of two classes by tracking if one vtblptr
in an object is overwritten by another vtblptr. Remember that
classes are roughly analogous to their vtable for our approach.

Naturally, this also means that we have to track the creation
of a potential object by monitoring the new operators of
the memory allocator. By correctly identifying constructors
and destructors, our approach would also be able to make a
statement about the direction of the inheritance, i. e., detect
which class is the base and which the deriving class. In its
current implementation, however, our approach reconstructs
the class hierarchy as a plain set.

Due to compiler optimizations, constructors are often in-
lined next to the memory allocation of the object in the
same function. The same concept is applied to destructors,
analogously. While our approach does not identify constructors
and destructors directly, it detects the characteristic pattern
of vtblptr overwrites. As a result, we are able to detect
overwrites for which a concrete classification as constructor
or destructor is more involved. More precisely, our overwrite
analysis is performed on statically calculated paths through
multiple functions, as discussed in Section IV. Thus, we avoid
having problems with function inlining as opposed to other
approaches such as the one presented by Jin et al. [17].

2) Vtable Function Entries: Classes in the same hierarchy
share attributes and a subset of virtual functions. Also, a class
that inherits virtual functions from another class does not have
to overwrite it. As a result, the vtables of both classes, base and
derived, may contain multiple entries that point to the same
function as in the other classes’ vtable. In order to work in
polymorphic constructs, this function entry has to be at the
same position in the vtables.

Hence, we can employ a heuristic that checks if multiple
vtables share the same function entry at the same position.
If they do, we consider them as related. Obviously, specific
entries like a 0 entry or the pure virtual function have to
be excluded from this heuristic. Note that, similar to the
overwrite analysis in its current form, no direction information
is included. Naturally, if the compiler places the same function
entry at the same position in unrelated vtables due to optimiza-
tion passes, our analysis would find them to be related. This
would lead to an overestimation of the found class hierarchy.
However, the evaluation results in Section VI-A show that this
case can be neglected in practice.

5



Fig. 3. Order of vtblptr overwrites during the creation of an object of class C. The control flow of the execution of Constructor C is depicted as dotted
lines.

3) Inter-Procedural Data Flow: We perform our analysis
on paths through multiple functions. Even if analysis within a
function is well defined, special attention has to be paid to the
point where function boundaries are traversed.

a) Forward Edge: Virtual functions are usually only
called via an indirect call instruction. As these are dispatched
dynamically based on a concrete object, the list of potential
call targets is not easily retrieved statically. As the overwrite
analysis analyzes paths through multiple functions, indirect
callsites pose a roadblock and may prevent the analysis from
following the call target. Consequently, vtable relations that are
established beyond this point will be missed by the analysis.
We say it lacks context, as no potential object at the callsite
is known with which the callsite could be resolved.

In order to tackle this problem, the static analysis tries to
resolve the indirect call instruction with the help of the context
(essential a memory state) it built up on the current path. If
the argument of an indirect call instruction is known, i. e., it
dereferences a known vtblptr, we resolve the target function
and continue the analysis in the newly discovered function on
the path while keeping the current context.

As an additional side effect of resolving the branch targets
at a vcall in the current analysis run, we know which vtable is
used for it. Since in polymorphic constructs only classes within
the same hierarchy are allowed, a vcall can only be used by
objects of dependent classes. Hence, if during the analysis the
same vcall is used by objects containing different vtables, these
vtables are related (i. e., the objects are from the same class
hierarchy). However, no information about the direction of the
inheritance of the classes is obtained.

b) Backward Edge: In addition to passing known con-
text on to the beginning of a more deeply nested function, the
analysis also has to take return values of a callee back to its
caller into account. Since different paths through the callee can
result in multiple different return values, we generalize them
into a set of return values, which is effectively the union of
the individual return values on each path. Then, if the return
value is used in a point where more context is required, such
as a vcall, the information provided all possible return values
can be used to, e. g., resolve an indirect callsite.

Consider the example given in Figure 4, which was en-
countered in the FileZilla FTP client. This function returns a
different object depending on the given argument. The classes
that are used to create the object (namely, X, Y, and Z) are
part of the same hierarchy. Without tracking the possible
return values of this function into a vcall of the caller, it is

Fig. 4. A simplified version of the function GetSortComparisonObject
from the FileZilla FTP client. Depending on the given argument, it creates
a new object of different classes and returns it. Without considering the
backward edge, no statement about the classes referenced in this function
can be made.

Fig. 5. A class hierarchy that is connected via a shared library. Classes G
and J both inherit from classes belonging to the same hierarchy in a different
module. This fact is only observable when taking module boundaries into
account.

not possible to find the relation of these classes based on
information of the forward edge alone.

4) Inter-Modular Data Flow: Applications are commonly
divided into multiple modules (also known as libraries), where
each module performs a specific task. On Linux, these modules
are implemented using shared objects, which already include
the notion that common functionality can be reused by dif-
ferent applications. Obviously, modules can depend on each
other. Specifically, in C++, it is possible to interact with classes
exported by a shared object. Such relations would be hidden
from our analysis when analyzing single modules only due
to missing context. To counter this, we support inter-modular
analyses.

6



Consider the example depicted in Figure 5. The application
itself contains two class hierarchies that appear to be unrelated
when looking at the main module. However, when taking the
application’s shared library into account, it becomes apparent
that the two hierarchies are, indeed, related. Both hierarchies
in the main module derive from a class of the very same hier-
archy in the shared library. Isolated analysis of the individual
modules would not have yielded the same result.

Our approach analyzes shared libraries first and creates data
flow summaries of the return values and vtblptr overwrites
in their respective modules. If a function in a shared library
is called during the analysis phase, the aforementioned sum-
maries are added to the current context accordingly. This way,
we can also consider all class hierarchy connections that are
outside of the currently analyzed module.

IV. IMPLEMENTATION

Based on the concepts presented in Section III, we im-
plemented an analysis framework called Marx in C++ for
Linux x86-64 binaries. Note that even though only Linux
x86-64 binaries are supported as of now, the implementation
can be easily extended to support more architectures. This is
supported by the fact that we use VEX-IR from the Valgrind
project [5] as our intermediate language.

In the following, we describe the implementation of Marx,
discuss challenges we encountered, and explain how we solved
them. To foster research on this topic, the source code of Marx
is freely available at https://github.com/RUB-SysSec/Marx.

The first step of our analysis, vtable extraction, is per-
formed on an IDA database using scripting facilities provided
by IDAPython [2]. In addition to the candidate vtables identi-
fied via the heuristics H1 – H6 described in Section III-A, the
control-flow graph (CFG) of all known functions is extracted
as well, which is used in the subsequent static analysis step.

The static analysis is mostly driven by a data tracking
engine which updates the context collected upon a path through
the binary, as discussed in Section III-B. Said context is
used to track assignments of vtables to new objects and their
overwrites in constructors and destructors. In its current state,
the engine implements basic 64-bit VEX instructions, as this
is already sufficient for our needs. The constructs we want to
identify hardly involve any complex calculations and with our
focus on real-world applicability, we have to weigh up Marx’
precision against its performance.

A. Starting Points and Context Sensitivity

Marx starts its analysis for each function in the target
program separately, i. e., each function serves as starting point
for at least one path. In order to obtain reasonable results for
a specific path, however, enough context has to be known in
which the function is executed. Otherwise, relations may be
missed and the current traversal would not add to the overall
results of the analysis.

There are multiple ways to ensure that the analysis visits
a function g with a reasonable amount of context. For one, if
g lies deeper within a path, it is reasonable that its caller f
already adds vital information to the context. By starting an
analysis path at f , the context added by it is available when

arriving at g. If f constructs an object and g overwrites its
vtable, this information would be missed by analyzing g out
of context. This aspect is discussed further below.

On the other hand, it helps to consider the context a
function inherently lies in. For example, g may be a virtual
function. This, in turn, means that it belongs to (at least)
one vtable. Hence, our analysis can be provided with some
initial context: a thisptr exists and the object’s vtblptr can be
initialized to point to the vtable g lies in. For example, for the
x86-64 Itanium C++ ABI, any occurrence of [rdi + 0] is
then known to resolve to the current vtblptr.

This enables the analysis to handle operations on the object
itself now that the target object is known (vtblptr overwrites or
vcalls). Further, if g belongs to multiple vtables, g is analyzed
in just as many contexts.

B. Path Creation and Convergence

The previous section already hinted on where possible
paths through the binary start—at any known function. How-
ever, care has to be taken that a path ends at a point where
all relations have been picked up by our analysis and no
superfluous calculations are performed by further following
the path. A naı̈ve approach would be to simply analyze all
possible paths at the given starting point. Yet, this leads to
what is called the path explosion problem, as the number of
paths easily exceeds a feasible amount for non-trivial CFGs.

Marx decides which paths through a function are worth
analyzing by following a heuristic: on each basic block in the
CFG, a predicate is run which decides whether the block is
considered interesting. We consider those blocks as interesting
that contain one or more of the following cases: (i) an indirect
call (i.e., a possible vcall), (ii) a (direct) call to a new operator,
or (iii) an instruction operating on a vtblptr. With this heuristic,
we attempt to visit only those blocks that add to the overall
context we are interested in.

We then compute paths that try to visit as many interesting
basic blocks as possible before reaching an exit block. In order
to avoid a high computational complexity, a threshold t is
introduced. If a function contains more than t interesting basic
blocks, paths are generated that guarantee to visit at least one
interesting block, but no attempts are made to maximize this
number. Empirically, we found a threshold of 20 interesting
basic blocks to be sufficient for our purposes. By trying to visit
multiple interesting basic blocks on a path within a function,
overwrites in the very same function are more likely to be
detected. This is, for example, the case for inlined constructors:
one block may allocate memory, whereas another writes the
object’s vtable.

Loops are only traversed once, i. e., paths are guaranteed
to visit every basic block at most once. Empirically, we did
not encounter cases where loop unrolling would have yielded
better results in terms of object creation coverage.

Up to now, we only considered paths within a certain
function. However, such a path may contain calls to other
functions. As already stated in the previous section, the call
depth of a path impacts the amount of context available to our
analysis, which, in turn, strongly impacts its results. Still, it is
also an important factor to ensure that the analysis terminates

7



in a reasonable amount of time and, once again, illustrates how
one has to weigh up performance and accuracy. Empirically,
we determined that a maximum call depth of 2 is sufficient for
analyzing large real-world applications. Note that, depending
on time and resources available to an analyst, higher precision
can be achieved by increasing this number.

C. Virtual Callsite Identification

Even though the information collected in these steps is
already helpful for an analyst, we further refine the result and
try to distinguish vcalls from other indirect call constructs and
only resolve target sets for the former. To detect a vcall, Marx
searches for the virtual function dispatch structure described
in Section II-C. As this structure applies to both vcalls and
other types of indirect calls (e. g., function pointers), we
implemented two modes to resolve the targets: conservative
and non-conservative mode.

In conservative mode, an indirect call is only identified
as vcall if the thisptr holds a known object and a vtable is
involved when computing the target address. This ensures that
the analysis has an exact state for the thisptr.

In non-conservative mode, an indirect call is considered to
be a vcall simply if the vtable is involved in the computation of
the target address, i. e., we drop the requirement that the thisptr
has to be valid. Due to missing context during the analysis
(i. e., call depth is depleted), memory locations might not be
identified as objects and therefore the thisptr check can fail.
The non-conservative mode allows the analysis to resolve more
vcalls since requirements are relaxed. However, overestimation
can lead to a higher false positive rate. The difference between
both modes is further evaluated in Section VI-B.

V. APPLICATIONS

Beyond applications in the area of reverse engineering, the
results of the reconstructed class hierarchies can also be used
to significantly improve defenses that mitigate attacks against
C++ applications. In this section, we present two protection
approaches build on top of the analysis results provided by
Marx: vtable protection and type-safe object reuse. In practice,
a C++ application can be analyzed by Marx before deployment
and then set up with the wanted protection.

A. VTable Protection for Binaries

VTable protection and, more generally, Control-Flow In-
tegrity (CFI) [7] is a promising way to stop advanced code-
reuse attacks. In its ideal form, it limits an attacker by
enforcing that each indirect branch can only target valid—
as intended by the programmer—code paths. Unfortunately,
practical CFI implementations suffer from precision loss when
determining the set of valid targets for each branch [11], [19],
[23]. Naturally, this also goes for CFI implementations that
only protect virtual callsites [15]. Since it is even harder to
recover class hierarchies of an application without access to
its source code, current state-of-the-art binary-level defenses
rely on weak characteristics to narrow down the set of call
targets [23]. Examples include looking only at argument count
information [28], enforcing that the vtblptr has to point to
read-only memory [13], or allowing all existing vtables at a
vcall [21]. Despite drastically reducing the set of valid targets,

these approaches may still leave enough wiggle room for
attackers to launch devastating attacks [11], [19], [23].

With the reconstructed class hierarchies, we can extend
existing binary-level CFI solutions with a vtable protection.
Our goal is to increase CFI guarantees for C++ applications
by expanding state-of-the-art defenses with a mechanism to
enforce correct class hierarchies for indirect branches. On
that account, we extract the index into the vtable for each
identified vcall that is used to determine the function entry
(as explained in Section II-C). With the help of the class
hierarchy, we are then able to generate a function type for
all virtual functions at this position in the class hierarchy.
In our example shown in Figure 1, functions A::funcA1,
B::funcB1, and thunk to C::funcB1 would get the
same function type. Obviously, targeting A::funcA1 is not
allowed at vcalls that are used to branch to B::funcB1
and thunk to C::funcB1, indicating an overestimation
of our approach. However, the achieved precision of the call
target set is a vast improvement in comparison to existing
binary-only vtable protection approaches and it remains to be
shown that this small overestimation can be exploited by an
adversary [29].

Ideally, the vtable protection would merely insert a label
check before each vcall that verifies whether the target is
of the same function type as the virtual callsite. Since our
static analysis is in certain cases not able to precisely assign
a hierarchy to each vcall, however, we apply two additional
techniques:

• Dynamic Analysis. To increase coverage, we run the
binary in a controlled environment with trusted input
(e. g., by running unit tests). During dynamic analysis,
we inspect whether (i) executed indirect calls exhibit
characteristics of a vcall, (ii) hierarchies used at the
same vcall are merged together, and (iii) detected
vcalls are in fact vcalls.

• Slow Path. Since our analysis may still miss key
information about callsites (e.g., class hierarchy re-
lations, leading to false positives), our extension can
enter a slow path when a function type check failed
(treating the failure as an anomaly rather than breaking
the program). This slow path can be used to further
investigate the branch and to decide if it is allowed or
not.

Moreover, as we are only interested in protecting C++
semantics, our static analysis filters callsites that are definitely
not vcalls.

We implemented a binary-only vtable protection on Linux
for x86-64, using a similar binary run-time instrumentation
model as proposed by Van der Veen et al. [28]: we use
Dyninst [10] to move all functions to a protected shadow code
region and prepend them with a two-byte function type value,
as obtained from our static analysis. Next, we instrument each
vcall with a short sequence of instructions. These instructions
check whether the target’s function type matches that of the
vcall. If not, it enters our slow path, which we implemented
by using the PathArmor open source CFI framework [27].
Note that we did not implement our own user-space JIT
verifier, but rather let the kernel module sleep for 10 ms

8



whenever a new path is found. This is to carefully mimic
the behavior of the original PathArmor’s implementation with
an over-approximation of the average values (Table 3 from
the PathArmor paper [27]). We also remark that we adopted
PathArmor’s context-sensitive CFI approach to demonstrate
the feasibility of our protection strategy similar to other
efforts [20], but our system can incorporate any other solution
to operate heavyweight security checks on the slow path.

B. Type-safe Object Reuse

Typically a process reuses freed memory for new alloca-
tions blindly. Attackers can abuse this mechanism by exploit-
ing use-after-free vulnerabilities, where a malicious object is
carefully placed in memory that was previously occupied and
(dangling) pointers still point to it. Type-safe memory alloca-
tors such as Cling [8] aim at reducing this risk by preventing
memory chunks of different types from being allocated in the
same location. Essentially, type-safe memory (and in our case
object) reuse maintains pools (i. e., memory regions) that are
used for allocating only a particular type of object. Newly
allocated objects are placed only in their own typed pool, and
objects with different types cannot share a common memory
location in the lifetime of the process. Assuming the class
hierarchy of a C++ program is known, types can be defined
based on class relations. As a result, we can reduce the attack
surface by forcing pointers of similar typed objects to overlap.
Unlike Cling [8], we focus only on type-safe C++ object reuse,
with object types derived from the recovered class hierarchy.
On the other hand, Cling is C++ agnostic in principle and
the class hierarchy as reconstructed by Marx can significantly
improve it in handling C++ allocations. The benefit is to reduce
the number of typed pools (and memory usage) and also avoid
expensive instrumentation to derive the run-time type (Cling
relies on callstack hashes rather than offline type information).

To demonstrate this concept, we built a type-safe object
reuse system based on the class hierarchy exported by Marx.
Our system consists of two parts: an allocator with type-
safe object reuse support and a library to instrument object
allocations. The allocator enhances tcmalloc with functions
that leverage type information to place new objects in type-
based pools.

Specifically, in tcmalloc, pools are subdivided in align-
ment pools. For performance reasons, tcmalloc keeps track
of thread-local pools and one central pool. When a thread-
local pool reaches a predefined limit of free pages, it transfers
some of the free pages to the central pool. Merging pools can
be an issue for typed allocations since different types can end
up in the same pool. Notice that new typed allocations must
be aligned with past ones. When the allocation size does not
divide the page size, it is possible that an object overlaps two
pages. If this is the case and at least one of the two pages
with the overlapping object are given back to the central pool,
we can not guarantee that following allocations are correctly
aligned. Therefore, we do not give any memory back from
typed pools if the alignment size class does not divide the size
of a page.

Finally, our type-safe object reuse application contains a
shared library that instruments all allocations at runtime. The
shared library is preloaded with the protected binary to trigger

type-based allocations when virtual objects are instantiated and
to resolve the actual allocation type based on the available class
hierarchy. The type resolution works as follows. We start by
preprocessing the analysis of Marx to construct triples of the
form (location, size, type). Here, location is
the address of the call-site of new, size the size given to new,
and type is a unique identifier. Moreover, the type identifier
(or type tag) is generated by assigning a distinct value to each
unique class hierarchy found by Marx. At runtime, we load the
file containing these triples and store them in a hashtable. This
hashtable uses the tuple (location, size) as key and
the type as value. The shared library overrides the new and
new[] operators, so we can infer the type information before
dispatching to our typed allocation function in tcmalloc.
Note that some allocations may be missed. We stress here that
our intention is to showcase a prototype based on the exported
class hierarchy and not a mature defense. In a real setting, the
binary should be rewritten [10] by adding the resolution code
to all callsites that construct virtual objects—eliminating the
need for any run-time type inference instrumentation.

For each occurring allocation, the size of the allocation is
used as the key and the location is computed using the return
address. With this information, the type tag is retrieved from
the hashtable and passed to the modified allocator function,
which maintains a pool per allocated type. When no type exists
for the particular location and size combination, a value of zero
is returned. The allocator uses this value to choose a fast path,
where no typed memory pools are used.

VI. EVALUATION

In this section, we evaluate Marx and its applications in
terms of performance and accuracy. Unless stated otherwise,
all test cases are compiled using GCC 4.8.5. Our test cases in-
clude a variety of real-world applications and shared libraries.
Consequently, no alterations to the compiler options specified
by a test case have been made, i. e., each program is compiled
with the compiler flags intended by the authors. We evaluated
our class hierarchy reconstruction and virtual callsite target
resolution on Ubuntu 14.04 LTS running on an Intel Core i7-
2600 CPU with 16 GB of RAM.

The evaluation testbed for our binary vtable protection
and type-safe object reuse implementations is a system with
an Intel Core i7-6700K CPU @ 4.00GHz and 16 GB of
RAM, running Ubuntu 14.04 LTS with Linux kernel 4.2.0 and
transparent huge paging disabled.

A. Class Hierarchy Reconstruction

The main goal of our framework is to provide an analyst
with accurate information about the class hierarchies. Hence,
we evaluated the precision of Marx by comparing the analysis
results with the class hierarchies of the application as reported
by the compiler. More specifically, the ground truth is obtained
by parsing the RTTI of the target application. Remember
that our analysis reconstructs an individual class hierarchy as
a set and does not contain information about the direction
of inheritance. Hence, the ground truth is also extracted as
a set. Table I shows the accuracy of our class hierarchy
reconstruction for various real-world applications and shared
libraries. Sizes in the table are given in MiB and are taken
from the stripped binaries without debug information.

9



TABLE I. RESULTS OF THE CLASS HIERARCHY RECONSTRUCTION ANALYSIS. size GIVES THE SIZE OF THE STRIPPED BINARY IN MIB. # GT AND #
analysis GIVE THE NUMBER OF HIERARCHIES IN THE GROUND TRUTH AND FOUND DURING THE ANALYSIS, RESPECTIVELY. # matching GIVES THE NUMBER

OF HIERARCHIES THAT ARE CORRECTLY RECONSTRUCTED. # overestimated AND # underestimated GIVE THE NUMBER OF RECONSTRUCTED HIERARCHIES
THAT ARE OVERESTIMATED AND UNDERESTIMATED, RESPECTIVELY. # not found GIVES THE NUMBER OF HIERARCHIES THAT WERE NOT FOUND DURING

THE ANALYSIS. # not existing GIVES THE NUMBER OF HIERARCHIES THAT WERE FOUND DURING THE ANALYSIS BUT DO NOT EXIST IN THE GROUND TRUTH.
time needed GIVES THE TIME THAT THE STATIC ANALYSIS NEEDS TO COMPLETE.

Program size (MiB) # GT # analysis # matching # overestimated # underestimated # not found # not existing time needed (hh:mm:ss)

VboxManage 5.0.24 0.97 33 45 32 – 1 – 9 0:06:12
MySQL Server 5.7.11 23.91 78 117 69 1 7 1 – 11:36:17

MongoDB 3.2.4 27.72 158 253 137 – 8 13 63 1:08:41
Node.js 5.10.1 15.18 59 84 55 2 2 – 14 0:33:16

FileZilla 3.13.1 (GCC 4.9) 4.42 21 9 3 6 4 8 1 1:19:59

VboxRT.so 5.0.24 2.27 3 3 2 – – 1 1 0:00:02
VboxXPCOM.so 5.0.24 1.06 8 14 3 – 2 3 1 0:00:05

libFLAC++.so 6.3.0 0.10 3 3 3 – – – – 0:00:01
libebml.so 1.3.3 0.14 2 2 2 – – – – 0:00:01

libmatroska.so 1.4.4 0.65 2 2 2 – – – – 0:00:17
libmusicbrainz5cc.so 5.1.0 0.56 3 2 1 – 1 1 – 0:00:01

libstdc++.so 6.0.18 0.93 5 24 2 – 2 1 – 0:00:01
libwx baseu-3.1.so 3.1.0 2.55 33 26 26 – – 7 – 0:00:47

libwx baseu net-3.1.so 3.1.0 0.29 5 7 4 – 1 – – 0:00:01
libwx gtk2u adv-3.1.so 3.1.0 1.94 20 23 17 1 1 1 – 0:00:21
libwx gtk2u aui-3.1.so 3.1.0 0.59 7 7 5 1 1 – – 0:00:01
libwx gtk2u core-3.1.so 3.1.0 5.92 41 46 31 6 2 2 1 0:01:17
libwx gtk2u html-3.1.so 3.1.0 0.79 5 9 2 2 1 – – 0:00:06
libwx gtk2u xrc-3.1.so 3.1.0 1.06 4 4 2 1 1 – – 0:00:03

Overall, we observe that Marx is capable of precisely
recovering the information about the class hierarchies for many
types of applications. We find that the results are better for
applications than for shared libraries. For applications, the
analysis process was able to correctly reconstruct 84.8% of the
hierarchies on average. Only 6.3% are underestimated and also
6.3% of the hierarchies were not found. For shared libraries, on
average, 72.3% of the hierarchies were correctly reconstructed,
while 8.5% of the hierarchies were underestimated and 11.3%
were not found. Consequently, we conclude that Marx is
able to recover most of the class hierarchies of the target
binaries completely and therefore provides helpful information
for an analyst. The difference between applications and shared
libraries results stem from the fact that the analysis of a
shared object misses a lot of context (cf. Section IV-A).
Shared objects are not written to be executed as a standalone
application. Hence, most functions are not called from within
the shared object, but only from an application, using the
interface exposed by the library.

This is also evident when looking at the time needed
to analyze an application in comparison to a shared library.
Almost all of the tested shared libraries are analyzed in under a
minute. The functions of applications are more connected with
each other through calls. Since Marx follows these connections
and analyzes the called functions within the current context, it
needs more time to analyze the whole application. In contrast,
shared libraries tend to provide a rather “flat” functionality and
do not have so many connected functions. Hence, analyzing
them is faster.

The application with the best results is VboxManage. Marx
underestimated only one hierarchy and correctly reconstructed
the remaining 32. However, Marx also found 9 hierarchies
that do not exist in the application. Note that non-existing
hierarchies are most likely not used in code constructs such
as vcalls or object creation at a new operator. Hence, in
applications such as vtable protection or type-safe object reuse
such overestimations have no effect and do not influence the
results.

For the largest application, MongoDB, Marx was able

to reconstruct 137 out of 158 hierarchies correctly. Only
8 hierarchies were underestimated and 13 were not found
during the analysis. Most of these missing hierarchies are
connected via an abstract class which was not referenced in the
binary code (most likely due to compiler optimizations) and
hence not found during the analysis. For the largest shared
library, libwx gtk2u core-3.1.so, 31 hierarchies were correctly
reconstructed. 2 hierarchies were underestimated and only 2
were not found during the analysis.

The application FileZilla had to be compiled with GCC
4.9 since it requires support for C++14, which is not available
for GCC 4.8. It has the worst results of all test cases, as
only 3 out of 21 hierarchies were reconstructed correctly. 6
hierarchies were overestimated during reconstruction, 4 under-
estimated, and 8 not found at all. A manual evaluation of the
underestimated and missing hierarchies yields two reasons for
these results: First, most of these hierarchies are connected
via classes for which no vtable has been emitted by the
compiler, which is why Marx cannot leverage them. This is
due to optimization passes that remove these vtables from
the binary. A detailed discussion is given in Section VII.
Second, FileZilla makes heavy use of the wxWidgets library
(i.e., the shared objects with libwx prefix in Table I). Some
underestimated hierarchies are connected via vtables from
these shared objects. Despite Marx’s inter-modular data flow
ability, it was not able to find a connection between all classes
of the underestimated hierarchy with the external ones. A
manual investigation revealed that not all classes (despite their
connection to an external class according to RTTI) execute a
library function that overwrites the vtblptr—presumably due
to compiler optimizations.

B. Virtual Callsite Targets

With static analysis, it is hard to determine the target func-
tion of an indirect call. As noted earlier, for binaries compiled
from C++ code, virtual functions are mostly implemented
using indirect call instructions. To assist a reverse engineer,
our static analysis hence attempts to resolve the target set of a
vcall as accurately as possible. To evaluate the correctness of

10



TABLE II. RESULTS OF THE VIRTUAL CALLSITE RESOLUTION. # GT AND # analysis GIVE THE NUMBER OF VIRTUAL CALLSITES IN THE GROUND TRUTH
AND THE FRAMEWORK’S RESULTS, RESPECTIVELY. # correct GIVES THE NUMBER OF VIRTUAL CALLSITES IDENTIFIED CORRECTLY. identified GIVES THE

VALUE IN PERCENT OF HOW MANY VIRTUAL CALLSITES OF THE GROUND TRUTH ARE IDENTIFIED. # resolved GIVES THE NUMBER OF RESOLVED VIRTUAL
CALLSITE TARGETS FOR THE NON-CONSERVATIVE AND CONSERVATIVE MODE (THE LATTER IN PARENTHESES). # matching GIVES THE NUMBER OF

RESOLVED TARGETS WHICH MATCH COMPLETELY WITH THE GROUND TRUTH. # overestimated AND # underestimated GIVE THE NUMBER OF TARGET SETS
THAT ARE OVERESTIMATED AND UNDERESTIMATED, RESPECTIVELY. # not existing GIVES THE NUMBER OF VIRTUAL CALLLSITES RESOLVED THAT DO NOT

EXIST IN THE GROUND TRUTH.

Finding Virtual Callsites Resolving Virtual Callsites
Program # GT # analysis # correct identified # resolved # matching # overestimated # underestimated # not existing

VboxManage 7 7 7 7 7 7 7 7 7
MySQL Server 7 7 7 7 7 7 7 7 7

MongoDB 14357 13369 12607 87.8% 736 (589) 159 (91) 550 (471) 27 (27) 0 (0)
Node.js 4925 5591 4879 99.0% 798 (754) 166 (142) 629 (611) 1 (0) 2 (1)
FileZilla 2779 2544 2495 89.7% 226 (210) 3 (3) 56 (48) 167 (159) 0 (0)

the analysis, we utilize the VTV (Virtual Table Verification)
GCC pass [26] to generate the ground truth. VTV collects
class information at compile time and emits code that verifies
each virtual call before (potentially) executing it. Verification
is performed by checking the object’s vtable against a set of
allowed vtables. In essence, this performs a check against a
specific class hierarchy. For our ground truth, we extract said
information and try to match it to the vcall it guards. As test
cases, we evaluated the applications used in Section VI-A.
Unfortunately, we were unable to compile the applications
MySQL Server and VBoxManage with VTV. More specifically,
the compiler crashed during the compilation of MySQL Server
and for VBoxManage we were not able to pass the configure
script.

Table II shows the results of the vcall target resolution.
Remember that non-conservative mode did not require validity
of the thisptr, but only a dependency on the vtblptr when
calculating the target address. As evident from the table, non-
conservative mode is able to resolve more vcalls during the
analysis. Furthermore, the false positive rate did not increase
significantly.

For the application Node.js, only 2 vcalls were wrongly
detected in non-conservative mode, whereas only 1 was not
found in conservative mode. In turn, the non-conservative
mode finds 43 vcalls more compared to conservative mode.
All in all, for Node.js, the analysis was able to identify 4,879
vcalls correctly, which are 99.0% of all virtual callsites.

The worst results were achieved for FileZilla. The analysis
was only able to resolve 3 vcalls correctly and most of the re-
maining resolved vcalls were underestimated. This results from
the relatively poor results during class hierarchy reconstruction
in comparison to the other applications. Due to missing and
underestimated hierarchies, Marx underestimates the targets
of most of the resolved vcalls. However, 2,495 vcalls were
identified correctly, which are 89.7% of all virtual callsites.

Overall, Marx is able to support an analyst by providing
him with potential target addresses for vcalls. Depending on
the precision of the class hierarchy reconstruction, the set of
target addresses might be underestimated. However, most of
the target sets are overestimated such that the analyst does not
miss branches during the analysis. On average, 90.5% of all
virtual callsites were identified by Marx during the analysis.
While the results of the call target resolution are helpful for
a reverse engineer, more comprehensive target sets can be
obtained by combining our static approach with a dynamic
profiling phase (such as in Section V-A).

C. VTable Protection

We focus the performance evaluation of our vtable protec-
tion implementation on two popular Linux C++ servers and
the seven C++ applications found in SPEC. Specifically, we
evaluated our binary vtable protection with a cross-platform
runtime environment for server-side web applications (Node.js
5.10.1, statically compiled with Google’s v8 JavaScript engine)
and a database server (MySQL 5.7.11). To benchmark Node.js,
we configured the Apache benchmark [1] to issue 250,000
requests with 10 concurrent connections and 10 requests per
connection for the default page. To benchmark MySQL, we
configured the Sysbench OLTP benchmark [4] to issue 10,000
transactions using a read-write workload.

We evaluated our vtable protection instrumentation using
the analysis results from Marx. To determine the impact
on runtime performance, we measured the time to complete
the execution of the benchmarks and compared against the
baseline—i.e., the original version of the benchmark with no
binary instrumentation applied. Table III details our results.

As shown in the table, it is evident, considering the massive
number of executed virtual calls, that our vtable protection
performs surprisingly well—10.8% runtime overhead across
all the tested applications (geometric mean). Interestingly,
there seems to be no direct correlation between the number
of executed virtual calls and the resulting overhead. SPEC
binaries astar and povray, for example, both execute over
4.5 billion virtual calls—all resolved using Marx’s analysis
results—but yield fairly different runtime overheads: 3% for
astar, vs 10% for povray, a delta that might be caused
by CPU caching behavior. We believe that these results are
encouraging: they demonstrate that enforcing vtable protection
(or CFI) over likely (rather than precise) invariants by using a
slow path for second-stage verification is feasible in practice.

D. Type-safe Object Reuse

To evaluate our type-safe object reuse application, imple-
mented on top of Marx, we ran experiments on the same set of
applications described in Section VI-C. Table IV presents our
results. The first two columns contain the number of unique
new (including new[]) callsites and types found by Marx’s
analysis. Next, we present the number of unique types caught
by our library, followed by the number of times malloc, new
and new[] were called (either typed or untyped) during the
benchmark. Finally, we show the overhead from our library.

We observe a slight speedup for astar, povray and soplex.
As can be observed from Table IV, the latter two are not heavy

11



TABLE III. EVALUATION RESULTS FOR OUR BINARY VTABLE PROTECTION IMPLEMENTATION. FOR EACH BINARY, THE TABLE SHOWS (I) Binary
Instrumentation DETAILS, DEPICTING THE NUMBER OF INSTRUMENTED vcalls, WRITTEN labels AND moved FUNCTIONS; (II) Runtime Statistics, LISTING THE
NUMBER OF vcalls executed AT RUNTIME, THE NUMBER OF VCALLS FOR WHICH A MATCHING TYPE WAS FOUND AT THE TARGET FUNCTION (fastpath), THE

NUMBER OF TIMES THE slowpath WAS ENTERED, AND THE NUMBER OF unique PATHS THAT REQUIRE JIT VERIFICATION; AND (III) Normalized Runtime,
LISTING OUR VTABLE PROTECTION RUNTIME OVERHEAD WITHOUT VERIFICATION (hashing only) AND WITH A SYNTHETIC VERIFICATION TIMEOUT OF

10MS PER UNIQUE PATH (+verification).

Binary Instrumentation Runtime Statistics Normalized Runtime
Program # vcalls # labels # moved # vcalls executed # fastpath # slowpath # unique hashing only +verification

MySQL 10,864 8,421 28,971 106,330,186 105,035,488 1,294,698 9 1.145 1.155
Node.js 5,905 5,917 26,751 31,491,929 31,491,918 11 6 1.263 1.265

astar 1 1 96 4,595,981,552 4,595,981,552 0 – 1.031 1.031
dealII 1,434 1,428 7,217 96,751,718 96,751,718 0 – 1.012 1.012
namd 2 3 102 2,016 2,016 0 – 0.999 0.999
omnetpp 706 725 1,949 2,061,547,468 2,061,206,142 341,326 361 1.067 1.083
povray 109 111 1,622 4,704,273,295 4,704,273,295 0 – 1.103 1.103
soplex 497 498 873 1,772,890 1,155,673 617,217 661 1.016 1.086
xalancbmk 9,303 9,340 12,808 8,306,798,756 8,306,260,183 538,573 111 1.264 1.272

geomean 342 350 2,318 91,018,910 86,672,172 0 67 1.096 1.108

TABLE IV. EVALUATION RESULTS FOR OUR TYPE-SAFE OBJECT REUSE IMPLEMENTATION. FOR EACH BINARY, THE TABLE SHOWS (I) Marx Statistics,
DEPICTING THE NUMBER OF EXTRACTED NEW CALLS AND THE NUMBER OF DIFFERENT TYPES ; (II) Runtime Statistics, LISTING THE NUMBER OF USED

TYPES , CALLS TO MALLOC , NEW , AND THE NEW-ARRAY OPERATOR DURING EXECUTION, AND (III) Normalized Runtime.

Marx Statistics Runtime Statistics Normalized Runtime
Program #new # types # types #malloc #new #new[] overhead

MySQL 1,017 47 16 2,705,675 82,225 13 1.009
Node.js 4,675 38 14 7,685,562 12,228,927 9,093,605 1.022

astar 11 0 0 1,008,577 108,037 8 0.999
dealII 1,632 11 5 48 144,642,689 6,616,448 1.016
namd 584 2 1 2 2 1,320 0.999
omnetpp 717 9 1 45,950,697 0 221,218,929 1.028
povray 54 7 6 2,414,075 83 176 0.995
soplex 20 6 2 3,718 3 4 0.997
xalancbmk 2,051 167 46 6,854 135,148,541 158 1.046

geomean 350 6 2 56,309 6,032 3,888 1.012

users of the new and new[] operators, and although astar
performs many calls to new, we detected no types during its
execution. This is caused by the fact that astar does not rely
on many C++ features [16]: Marx recovered one vtable which
is never written into a heap object in the program. Thus, the
new operator is never used with a type.

Our results for the real-world applications Node.js and
MySQL are much more realistic compared to the SPEC bench-
marks: our type-safe object reuse implementation captures a
significant fraction of the C++ types as reconstructed by Marx.
Although both applications heavily depend on C++ objects, the
overhead imposed by the type-safe object reuse application
is low. For example, in Node.js, we recorded more than 21
million new objects, while its normalized runtime is 2.2%. We
think that these results are encouraging: type-safe object reuse
provides significant security invariants, while our experiments
report a performance overhead of less than 5% (geometric
mean).

VII. DISCUSSION

In the following, we discuss the effects of compiler opti-
mizations on our analysis and review several ways to optimize
our prototype implementation.

A. Compiler Optimizations and Lost Information

Even though all of our evaluation results are encouraging,
we note that the biggest limitations of our approach are due
to compiler optimizations and a loss of information on the

binary level. Inherently, Marx is dependent on vtables (and
references to them) emitted by the compiler. Especially for
abstract base classes, however, such relations may not be
revealed by certain vtable usage patterns; the information is
simply missing from the binary and we cannot recover this
information. This increases the observable gap between the
formal class hierarchy as set up by the programmer and the
results obtained by Marx, based on artifacts found in the
(optimized) binary itself.

Such a case was encountered during the evaluation of
FileZilla. A compiler optimization removed vtables of ab-
stract classes from the binary which were the base classes
of complete hierarchies. As a result, the overwrite analysis
failed to join the smaller hierarchies. Since the vtables did
not have other characteristics that allows our approach to find
a connection (e. g., via heuristics discussed previously), the
reconstructed hierarchies were either not complete or not found
at all. Hence, the quality of our results depends on the size of
the gap between the formal and the actual class hierarchy as
encoded in the binary.

Other than this, we did not encounter any application-
specific idiom that affect the accuracy of our results.

B. Improving Analysis Contexts

Since our static analysis approach focuses on real-world
applications, we had to weigh up precision against performance
to be able to scale to complex binaries. Hence, we introduced

12



limiting factors such as the call depth restriction and char-
acteristics that we deem as interesting in a basic block. One
problem that may arise with these restrictions is that we may
miss important information during our analysis. Consider, for
example, a function fimp which yields valuable information for
our analysis, but is called from a fixed callsite. In the following,
we call such a function an important function. When our static
analysis processes the function’s caller and the basic block
that calls fimp is not considered interesting, it is highly likely
that no path is generated which ends up in fimp. Hence, our
analysis misses context that would be provided by the function
and its results loose precision.

A naı̈ve approach to tackle this problem is to consider
all call instructions as interesting during the path generation
(i. e., follow every call). This, however, does not scale to real-
world applications due to the path explosion problem. A better
solution is to mark those basic blocks with call instructions as
interesting that eventually reach important functions. In other
words, we recognize importance of functions as a transitive
function which, in turn, impacts the importance of its callers.

However, Marx analyzes the functions on a on-demand
basis and does not know if the target of a call instruction
is important for the analysis process (i. e., it only takes infor-
mation local to the current function into account). In order to
add global information about the importance of a function into
Marx’ decision process, we propose to add a preliminary pre-
processing step. In essence, we build a static call graph which
allows to propagate information about important basic blocks
up to its callers. During path generation, this can affect the
decision whether or not to follow an (otherwise uninteresting)
call. Additionally, this call graph can be enriched at analysis
time to include target sets resolved at a vcall. Further, it allows
to dynamically adjust the call depth.

C. Improving Shared Library Results

As shown in Section VI-A, the class hierarchy reconstruc-
tion of shared libraries is not as precise as for applications.
This is due to the fact that shared libraries are written to be
used from other applications or shared libraries. Hence, most
functions in a shared library are not called from within the
very same module. As a result, Marx has to analyze these
functions without any context given by the caller (e. g., a vcall
is using an object that is provided by the caller). This missing
information leads to a lower precision in reconstructing the
class hierarchy and fewer vcalls are found. One way to tackle
this problem is to analyze the shared library in combination
with an application that is using it. Once a function inside
a shared library is called from the application, the analysis
framework has a context that might help improving the results.
However, this does not necessarily cover all exported functions
of the shared library. Also, an analyst might not always have
an application at hand that is using the shared library that he
has to analyze.

D. Reconstructing RTTI

An interesting application of the class hierarchy reconstruc-
tion results is the subsequent reconstruction of RTTI associated
with vtables. This information can, in turn, be leveraged by
other applications, such as analysis programs or protection

mechanisms which are able to perform better when provided
with RTTI. Notably, this would be an easy way to incorporate
our results in potentially closed-source applications which
would not require modifications to the programs themselves.
However, since Marx is not able to recover the class hierarchies
with full precision in the general case, the applications have
to be able to cope with a certain amount of imprecision.

Furthermore, RTTI holds information about the inheritance
direction. More specifically, it only contains a pointer to the
RTTI of parent classes. Currently, our analysis approach is
not able to extract the direction of the inheritance. Therefore,
the recovered RTTI would contain all classes that are in the
same hierarchy and therefore overestimate it. Still, we note
that extraction of the inheritance direction can be added in the
future.

E. Improving VTable Protection

As shown in Section VI-C, the results of Marx can be
used for a binary-only CFI implementation focusing on vcalls.
However, even with a dynamic profiling phase to improve
the results of our static analysis, the slow path of our imple-
mentation is still required by some applications, which leads
to a relatively high performance overhead. In order to tackle
this problem, the implementation can be extended to use the
technique proposed by Prakash et al. [21]. If our analysis
cannot assign a reconstructed class hierarchy to a given vcall,
the CFI implementation can allow all functions at the same
offset in any known vtable. This way, the implementation
would have two different protection granularities: For vcalls
with an assigned class hierarchy, the set of allowed functions
lies within the class hierarchy. For vcalls without an assigned
class hierarchy, the set of allowed functions lies within the
known vtables. Hence, the verification at a vcall without an
assigned class hierarchy can also be implemented using a
simple label check.

VIII. RELATED WORK

We now review related work on the reconstruction of
C++ class hierarchies and discuss how Marx advances the
field. Most similar to our static analysis approach is the
work conducted by Jin et al. [17]. Their approach, called
objdigger, uses symbolic execution and inter-procedural data
flow analysis to discover objects of classes, their attributes,
and methods. However, their approach does not reconstruct the
class hierarchy and only the ideas to recover it are described in
the paper (which are similar to our vtblptr overwrite analysis).
Furthermore, the evaluation is only done on small test cases
with up to 10 classes instead of complex binaries.

The approach presented by Fokin et al. [12] focuses on
reconstructing the class hierarchies of C++ programs. Their
approach recovers the vtables in memory and analyzes them
and their corresponding constructors. However, they focus on
analyzing the structure of the vtable size and the usage of pure
virtual functions to recover the direction of the inheritance. The
data-flow through the program is not considered in their work,
leading to a certain imprecision.

Katz et al. [18] proposed an approach to support an analyst
that reverse engineers C++ binaries based on machine learning.
Their approach outputs a probability that indicates what class

13



is used at a given vcall. This is done by using sequences
of instructions that can be assigned to a specific class as a
training set. The trained model is then used to estimate other
vcalls and the used class, with the goal of giving the analyst a
hint where the control-flow might go next. Unfortunately, their
approach ignores polymorphism and is only able to provide
one possible branch target. Additionally, their evaluation was
done on small applications (largest one has a size of around
1MB) on a machine with 64 CPUs that took several hours.
Therefore, their approach is not able to support an analyst on
reverse engineering real-world C++ applications.

The binary analysis framework angr is presented by
Shoshitaishvili et al. [24]. Their work focuses on re-
implementing existing techniques for vulnerability identifica-
tion in order to compare them with each other. The introduced
framework has a modular design and provides the possibility
to be extended with new analysis techniques. The presented
algorithms of our approach could also be implemented with
angr instead of writing an own framework. However, angr
is written in Python and due to its performance, it is likely
not efficient for large real-world binaries such as Node.js or
MySQL Server.

Prakash et al. [21] presented vfGuard, a binary-only in-
direct call protection mechanism for C++ binaries. Their ap-
proach tries to protect vcalls by creating a whitelist with valid
calll targets. If the target address is not within the whitelist,
an attack is assumed and the execution is terminated. The
whitelist is determined by the offset into the vtable that is
used by the vcall. However, they do not try to recover the class
hierarchies because of its difficulty and just allow any vtable
at a vcall (with some additional filtering). T-VIP, proposed
by Gawlik et al. [13], is also a binary-only approach to
protect virtual callsites from vtable hijacking attacks. However,
they do not recover C++ specific structures such as vtables,
but reduce the virtual callsite characteristics to two heuristic
policies. The first policy restricts the vtblptr to point to read-
only memory at a vcall. The second policy checks if a random
function pointer in the vtable points to memory that is not
writable. Both policies narrow down the ability of an attacker
to inject a crafted vtable. However, more advanced code-reuse
attacks such as proposed by Schuster et al. [23] are not affected
by these policies. Gawlik et al. also proposed a third policy
to check if the used vtable resides in an allowed set built
with the help of the class hierarchy. However, they did not
implement this idea because previous existing work did not
show a practicable recovery of class hierarchies for real-world
programs.

Most similar to our presented application of a type-safe
object reuse is Cling, a work presented by Akritidis [8]. Cling
is a type-safe memory allocator used to mitigate use-after-free
attacks. It modifies the heap allocation process to provide types
for each memory allocation that is made in the application.
Cling uses the address of the allocation site and size as a type
for its pools. Hence, a use-after-free bug only grants access
to the remaining data of the same object type. In contrast,
our presented application builds types on the base of the
reconstructed class hierarchies. Since Cling is C++ agnostic
in principle, the class hierarchy as reconstructed by Marx
can significantly improve it in handling C++ allocations. The
benefit is to reduce the number of typed pools (and memory

usage) and also avoid expensive instrumentation for deriving
the run-time type. In a similar fashion, VTPin [22], a vtable
hijacking protection for binaries, which is currenlty class-
agnostic, could potentially leverage the extracted hierarchies
for increasing the accuracy in collecting pinned vtable pointers.

IX. CONCLUSION

In this paper, we presented a practical and efficient ap-
proach to reconstruct C++ class hierarchies from a given binary
application. Our static analysis follows data flow and tracks
objects through multiple paths through the target binary whilst
taking C++ characteristics into account. Hence, we recognize
artifacts resulting from the way compilers implement high-
level features such as polymorphism and use them to recover
information about the relation of classes in the binary.

We presented the design and implementation of a tool
called Marx capable of performing the outlined approach
and evaluated it on several large, real-world applications.
The results are promising: On average, 84.6% of the class
hierarchies of applications and 73.3% of the class hierarchies
of shared libraries were precisely reconstructed. The informa-
tion provided by our analysis can then be used to resolve
the sets of potential target functions of virtual callsites and
helps an analyst following control flow even across previously
unresolvable indirect calls.

Furthermore, we present two applications built atop of
the analysis results: an improved vtable protection mechanism
for binary executables, verifying the integrity of control flow,
and type-safe object reuse, which enhances type-safe memory
allocators. We demonstrate that, even in cases where the
extracted class hierarchy is reconstructed imperfectly, practical
defenses that improve security while maintaining a reasonable
performance level can be developed based on our results. To
compensate for the imprecision of the analysis, our vtable
protection treats violations as anomalies and triggers more
heavyweight checks on a slow path (trading off on perfor-
mance). On the other hand, our type-safe object reuse solu-
tion can gracefully tolerate type-to-pool mapping mismatches
(trading off on security). In short, we show that it is possible
to build fully conservative binary-level defense solutions on
top of imprecise information, exposing new interesting and
previously unexplored tradeoffs.

Since we believe that our analysis framework Marx pro-
vides promising results in the analysis of large, real-world
applications and hence represents a building block for future
research, we make it available for the research community.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their comments. This work was supported by the European
Commission through project H2020 ICT-32-2014 (SHARCS)
under Grant Agreement No. 644571, ERC Starting Grant No.
640110 (BASTION), and by the Netherlands Organization for
Scientific Research through grants NWO 639.023.309 VICI
(Dowsing) and NWO CSI-DHS 628.001.021.

REFERENCES

[1] Apache benchmark. http://httpd.apache.org/docs/2.0/programs/ab.html.

14



[2] IDAPython. https://github.com/idapython.
[3] Itanium C++ ABI. https://mentorembedded.github.io/cxx-abi/abi.html.
[4] SysBench. http://sysbench.sourceforge.net.
[5] Valgrind. http://www.valgrind.org/.
[6] C++ ABI for the ARM Architecture. http://infocenter.arm.com/help/

topic/com.arm.doc.ihi0041e/IHI0041E cppabi.pdf, 2015.
[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow

Integrity. In ACM Conference on Computer and Communications
Security (CCS), 2005.

[8] P. Akritidis. Cling: A Memory Allocator to Mitigate Dangling Pointers.
In USENIX Security Symposium, 2010.

[9] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos.
An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries.
In USENIX Security Symposium, 2016.

[10] A. R. Bernat and B. P. Miller. Anywhere, Any-Time Binary Instrumen-
tation. In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), 2011.

[11] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz. It’s a TRaP: Table
Randomization and Protection against Function-Reuse Attacks. In ACM
Conference on Computer and Communications Security (CCS), 2015.

[12] A. Fokin, K. Troshina, and A. Chernov. Reconstruction of Class Hier-
archies for Decompilation of C++ Programs. In European Conference
on Software Maintenance and Reengineering (CSMR), 2010.

[13] R. Gawlik and T. Holz. Towards Automated Integrity Protection of
C++ Virtual Function Tables in Binary Programs. In Annual Computer
Security Applications Conference (ACSAC).

[14] J. Gray. C++: Under the Hood. http://www.openrce.org/articles/files/
jangrayhood.pdf, 1994.

[15] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos.
Shrinkwrap: VTable protection without loose ends. In Annual Computer
Security Applications Conference (ACSAC), 2015.

[16] C. Isen and L. John. On the Object Orientedness of C++ programs in
SPEC CPU 2006. In SPEC Benchmark Workshop. Citeseer, 2008.

[17] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel,
J. Havrilla, and P. Narasimhan. Recovering C++ Objects From Binaries
Using Inter-Procedural Data-Flow Analysis. In ACM SIGPLAN Pro-
gram Protection and Reverse Engineering Workshop (PPREW), 2014.

[18] O. Katz, R. El-Yaniv, and E. Yahav. Estimating Types in Binaries using
Predictive Modeling. ACM Symposium on Principles of Programming
Languages (POPL), 2016.

[19] J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi,
A.-R. Sadeghi, T. Holz, and M. Franz. Subversive-C: Abusing and
Protecting Dynamic Message Dispatch. In USENIX Annual Technical
Conference, 2016.

[20] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting Memory
Disclosure with Efficient Hypervisor-enforced Intra-domain Isolation.
In ACM Conference on Computer and Communications Security (CCS),
2015.

[21] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict Protection for Virtual
Function Calls in COTS C++ Binaries. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[22] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos.
VTPin: Practical VTable Hijacking Protection for Binaries. In Annual
Computer Security Applications Conference (ACSAC), 2016.

[23] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz. Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications. In IEEE
Symposium on Security and Privacy (S&P), 2015.

[24] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
(State of) The Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy (S&P), 2016.

[25] B. Stroustrup. C++ Applications. http://www.stroustrup.com/
applications.html.

[26] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing Forward-Edge Control-Flow In-
tegrity in GCC & LLVM. In USENIX Security Symposium, 2014.

[27] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical Context-Sensitive
CFI. In ACM Conference on Computer and Communications Security
(CCS), 2015.

[28] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
Tough call: Mitigating Advanced Code-Reuse Attacks At The Binary
Level. In IEEE Symposium on Security and Privacy (S&P), 2016.

[29] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song.
VTrust: Regaining Trust on Virtual Calls. In Symposium on Network
and Distributed System Security (NDSS), 2016.

15


